Network Systems Design
(Intel IXP2xxX)

Douglas Comer

Computer Science Department
Purdue University
250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

[1 Copyright 2004. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

Copy permission: these materials are copyright [1 2004 by Pearson Education and
Douglas Comer, and may not be reproduced by any means without written
permission from the author or the publisher. Permission is granted to use the
materials in any course for which Comer’'s text Network Systems Design Using
Network Processors is a required textbook. In addition to use for in-class
presentation, each student who purchases a copy of the textbook is authorized to
recelve an electronic or paper copy. For permission to use the materials in any way
other than the above, contact the author or the publisher.

Course I ntroduction
And Overview

NSD-Intel -- Chapt. 1 1 2004

Topic And Scope

The concepts, principles, and technologies that underlie the
design of hardware and software systems used in computer
networks and the Internet, focusing on the emerging field of
network processors.

NSD-Intel -- Chapt. 1 3 2004

You Will Learn

e Review of
— Network systems
— Protocols and protocol processing tasks
e Hardware architectures for protocol processing
e Software-based network systems and software architectures
e C(lassification
— Concept
— Software and hardware implementations

e Switching fabrics

NSD-Intel -- Chapt. 1 4 2004

You Will Learn
(continued)

e Network processors: definition, architectures, and use
e Design tradeoffs and consequences
e Survey of commercial network processors

e Detalls of one example network processor

— Architecture and instruction set(s)
— Programming model and program optimization

— Cross-development environment

NSD-Intel -- Chapt. 1 5 2004

What You WIill NOT Learn

e EE detalls

VLS technology and design rules
Chip interfaces. |Cs and pin-outs
Waveforms, timing, or voltage

How to wire wrap or solder

e [Economic detalls

NSD-Intel -

Comprehensive list of vendors and commercia products

Price points

- Chapt. 1 6

2004

Background Required

e Basic knowledge of
— Network and Internet protocols
— Packet headers
e Basic understanding of hardware architecture
— Registers
— Memory organization
— Typica instruction set

e Willingness to use an assembly language

NSD-Intel -- Chapt. 1 7 2004

Schedule Of Topics

e Quick review of basic networking

e Protocol processing tasks and classification

e Software-based systems using conventional hardware
e Special-purpose hardware for high speed

e Motivation and role of network processors

e Network processor architectures

NSD-Intel -- Chapt. 1 8 2004

Schedule Of Topics
(continued)

e An example network processor technology in detail
— Hardware architecture and parallelism
— Programming model
— Testbed architecture and features

e Design tradeoffs

e Scaling a network processor

e Survey of network processor architectures

NSD-Intel -- Chapt. 1 9 2004

Course Administration

o Textbook

— D. Comer, Network Systems Design Using Network
Processors, Intel | XP2xxx version, Prentice Hall, 2005.

e Grade
— Quizzes 5%
— Midterm and final exam 35%

— Programming projects 60%

NSD-Intel -- Chapt. 1 10 2004

Lab Facilities Available

e Extensive network processor testbed facilities
e Donations from

— Agere Systems

— IBM (now sold to Hifn)

— Intel

e [ncludes hardware and cross-development software

NSD-Intel -- Chapt. 1 11 2004

What You Will Doln The Lab

e \Write and compile software for an NP

e Download software into an NP

e Monitor the NP as it runs

e |nterconnect Ethernet ports on an NP board
— To other ports on other NP boards
— To other computers in the lab

e Send Ethernet traffic to the NP

e Recelve Ethernet traffic from the NP

NSD-Intel -- Chapt. 1 12 2004

Example Programming Projects

e A packet analyzer
— |P datagrams
— TCP segments
e An Ethernet bridge
e An IP fragmenter
e A classification program

e A bump-in-the-wire system using low-level packet
Processors

NSD-Intel -- Chapt. 1 13 2004

Questions?

A QUICK OVERVIEW

OF NETWORK PROCESSORS

NSD-Intel -- Chapt. 1 15 2004

The Network Systems Problem

e Datarates keep increasing

e Protocols and applications keep evolving

e System design is expensive

e System implementation and testing take too long
e Systems often contain errors

e Special-purpose hardware designed for one system cannot
be reused

NSD-Intel -- Chapt. 1 16 2004

The Challenge

Find ways to improve the design and manufacture of
complex networking systems.

NSD-Intel -- Chapt. 1 17 2004

The Big Questions

e What systems?
— Everything we have now
— New devices not yet designed

e What physical communication mechanisms?
— Everything we have now

— New communication systems not yet
designed/ standardized

e What speeds?
— Everything we have now

— New speeds much faster than those in use

NSD-Intel -- Chapt. 1 18 2004

More Big Questions

e What protocols?

— Everything we have now

— New protocols not yet designed/ standardized
e What applications?

— Everything we have now

— New applications not yet designed/ standardized

NSD-Intel -- Chapt. 1 19 2004

The Challenge
(restated)

Find flexible, general technologies that enable rapid,
low-cost design and manufacture of a variety of scalable,
robust, efficient network systems that run a variety of
existing and new protocols, perform a variety of existing and
new functions for a variety of existing and new, higher-speed
networks to support a variety of existing and new
applications.

NSD-Intel -- Chapt. 1 20 2004

Special Difficulties

e Ambitious goal
e Vague problem statement
e Problem is evolving with the solution
e Pressure from
— Changing infrastructure
— Changing applications

NSD-Intel -- Chapt. 1 21 2004

Desiderata

e High speed

e Fexible and extensible to accommodate
— Arbitrary protocols
— Arbitrary applications
— Arbitrary physical layer

e | OwW cost

NSD-Intel -- Chapt. 1 22 2004

Desiderata

e High speed

e Fexible and extensible to accommodate
— Arbitrary protocols
— Arbitrary applications
— Arbitrary physical layer

e | Ow cost

NSD-Intel -- Chapt. 1 22 2004

Statement Of Hope
(1995 version)

If there is hope, it liesin ASC designers.

NSD-Intel -- Chapt. 1 23 2004

Statement Of Hope
(1999 version)

27?7

If there is hope, it liesin A%gners.

NSD-Intel -- Chapt. 1 23 2004

Statement Of Hope
(2004 version)

programmers!

If there is hope, it liesin A%gners.

NSD-Intel -- Chapt. 1 23 2004

Programmability

e Key to low-cost hardware for next generation network
systems

e More flexibility than ASIC designs
e FEasier/faster to update than ASIC designs
e | essexpensive to develop than ASIC designs

e What we need: a programmable device with more capability
than a conventional CPU

NSD-Intel -- Chapt. 1 24 2004

The ldea In A Nutshdl

Devise new hardware building blocks

Make them programmable

Include support for protocol processing and 1/0
— General-purpose processor(s) for control tasks

— Special-purpose processor(s) for packet processing and
table lookup

| nclude functional units for tasks such as checksum
computation

Integrate as much as possible onto one chip

Call the result a network processor

NSD-Intel -- Chapt. 1 25 2004

The Rest Of The Course

e We will
— Examine the general problem being solved
— Survey some approaches vendors have taken
— Explore possible architectures
— Study example technologies

— Consider how to implement systems using network
Processors

NSD-Intel -- Chapt. 1 26 2004

Disclaimer #1

In the field of network processors, | am atyro.

NSD-Intel -- Chapt. 1 27 2004

Definition

Tyro\Ty'ro\, n; pl. Tyros. A beginner in learning; one who isin
the rudiments of any branch of study; a person imperfectly
acquainted with a subject; a novice.

NSD-Intel -- Chapt. 1 28 2004

By Definition

In the field of network processors, you are all tyros.

NSD-Intel -- Chapt. 1 29 2004

In Our Defense

When it comes to network processors, everyone is a tyro.

NSD-Intel -- Chapt. 1 30 2004

Questions?

Basic Terminology And Example Systems
(A Quick Review)

NSD-Intel -- Chapt. 2 1 2004

Packets Cdlls And Frames

e Packet
— Generic term
— Small unit of data being transferred
— Travels independently

— Upper and lower bounds on size

NSD-Intel -- Chapt. 2 2 2004

Packets Cells And Frames
(continued)

e Cdl

— Fixed-size packet (e.g., ATM)
e Frame or layer-2 packet

— Packet understood by hardware
e |P datagram

— Internet packet

NSD-Intel -- Chapt. 2 3 2004

Types Of Networks

e Paradigm
— Connectionless
— Connection-oriented
e Accesstype
— Shared (i.e., multiaccess)

— Point-To-Point

NSD-Intel -- Chapt. 2 4 2004

Connection-Oriented Networks

e Telephone paradigm (connection, use, disconnect)
e Examples

— Frame Relay

— Asynchronous Transfer Mode (ATM)

NSD-Intel -- Chapt. 2 5 2004

Point-T o-Point Network

e Connects exactly two systems
e Often used for long distance

e Example: data circuit connecting two routers

NSD-Intel -- Chapt. 2 6 2004

Data Cir cuit

e | eased from phone company

e Also caled serial line because data 1s transmitted bit-
serially

e Originally designed to carry digital voice

e Cost depends on speed and distance

e T-series standards define low speeds (e.g. T1)
e STS and OC standards define high speeds

NSD-Intel -- Chapt. 2 7 2004

NSD-Intel -- Chapt. 2

Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits
— 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2,488.320 Mbps 38880
OC-192 9,953.280 Mbps 155520
OC-768 39,813.120 Mbps 622080

Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits
— 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2,488.320 Mbps 38880
0OC-192 9,953.280 Mbps 155520
OC-768 39,813.120 Mbps 622080

e Holy grail of networking: devices capable of accepting and
forwarding data at 10 Gbps (OC-192).

NSD-Intel -- Chapt. 2 8 2004

Local Area Networks

e Ethernet technology dominates
e [|ayer 1 standards
— Media and wiring
— Signaling
— Handled by dedicated interface chips
— Unimportant to us
e | ayer 2 standards
— MAC framing and addressing

NSD-Intel -- Chapt. 2 9 2004

MAC Addressing

e Three address types
— Unicast (single computer)
— Broadcast (all computers in broadcast domain)

— Multicast (some computers in broadcast domain)

NSD-Intel -- Chapt. 2 10 2004

More Terminology

e |nternet
— Interconnection of multiple networks
— Allows heterogeneity of underlying networks
e Network scope
— Local Area Network (LAN) covers limited distance
— Wide Area Network (WAN) covers arbitrary distance

NSD-Intel -- Chapt. 2 11 2004

Network System

e |ndividual hardware component

e Serves as fundamental building block
e Used in networks and internets

e May contain processor and software

e QOperates at one or more layers of the protocol stack

NSD-Intel -- Chapt. 2 12 2004

Example Network Systems

e |Layer?2
— Bridge
— Ethernet switch
— VLAN switch

NSD-Intel -- Chapt. 2 13 2004

VLAN Switch

e Similar to conventional layer 2 switch
— Connects multiple computers
— Forwards frames among them
— Each computer has unique unicast address
e Differs from conventional layer 2 switch
— Allows manager to configure broadcast domains

e Broadcast domain known as virtual network

NSD-Intel -- Chapt. 2 14 2004

Broadcast Domain

e Determines propagation of broadcast/ multicast
e Originally corresponded to fixed hardware

— One per cable segment

— One per hub or switch
e Now configurable via VLAN switch

— Manager assigns ports to VLANS

NSD-Intel -- Chapt. 2 15 2004

NSD-Intel --

Example Network Systems
(continued)

Layer 3

Internet host computer

|P router (layer 3 switch)

Layer 4

Basic Network Address Translator (NAT)
Round-robin Web load balancer
TCP terminator

Chapt. 2 16

2004

Example Network Systems
(continued)

e |ayer>b
— Firewall
— Intrusion Detection System (IDS)
— Virtua Private Network (VPN)
— Softswitch running SIP
— Application gateway

— TCP splicer (also known as NAPT — Network Address
and Protocol Tranglator)

— Smart Web load balancer
— Set-top box

NSD-Intel -- Chapt. 2 17 2004

NSD-Intel --

Example Network Systems
(continued)

Network control systems

Packet / flow analyzer
Traffic monitor
Traffic policer
Traffic shaper

Chapt. 2

18

2004

Questions?

Review Of Protocols And Packet Formats

NSD-Intel -- Chapt. 3 1 2004

e Five-layer Internet reference model

Protocol Layering

Application

Transport

Internet

Network Interface

Physical

<—— Layer 5

<~—— Layer 4

<—— Layer 3

<—— Layer 2

<~—— Layer 1

e Multiple protocols can occur at each layer

NSD-Intel -- Chapt. 3

2004

Layer 2 Protocols

e Two protocols are important
— Ethernet (widely used)
— ATM (defines per-flow QoS)

e \We will concentrate on Ethernet

NSD-Intel -- Chapt. 3 3 2004

Ethernet Addressing

e 48-bit addressing

e Unique address assigned to each station (NIC)

e Destination address in each packet can specify delivery to
— A single computer (unicast)
— All computers in broadcast domain (broadcast)

— Some computers in broadcast domain (multicast)

NSD-Intel -- Chapt. 3 4 2004

Ethernet Addressing
(continued)

e Broadcast addressis dl 1s

e Single bit determines whether remaining addresses are

unicast or multicast

multicast bit

|

XXXXXXXM

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

e Multicast bit travels first on the wire

NSD-Intel -- Chapt. 3

2004

Ethernet Frame Processing

Dest. Source Frame
Address Address Type Data In Frame

6 6 2 46 - 1500

<~——— Header Payload

Dedicated physical layer hardware

— Checks and removes preamble and CRC on input
— Computes and appends CRC and preamble on output

e [ayer 2 systems use source, destination and (possibly) type
fields

NSD-Intel -- Chapt. 3 6 2004

| nter net

e Set of (heterogeneous) computer networks interconnected by
|P routers

e End-user computers, called hosts, each attach to specific
network

e Protocol software
— Runs on both hosts and routers

— Provides illusion of homogeneity

NSD-Intel -- Chapt. 3 7 2004

| nter net Protocols Of | nterest

e |Layer?2

— Address Resolution Protocol (ARP)
e Layer3

— Internet Protocol (1P)
e |Layer4

— User Datagram Protocol (UDP)

— Transmission Control Protocol (TCP)

NSD-Intel -- Chapt. 3 8 2004

| P Datagram For mat

0 4 8 16 19 24 31
VERS HLEN SERVICE TOTAL LENGTH
ID FLAGS F. OFFSET
TTL TYPE HDR CHECKSUM
SOURCE
DESTINATION

IP OPTIONS (MAY BE OMITTED)

PADDING

BEGINNING OF PAYLOAD

e [Format of each packet sent across Internet

e Fixed-size fields make parsing efficient

NSD-Intel -- Chapt. 3

2004

|P Datagram Fields

Field Meaning
VERS Version number of IP being used (4)
HLEN Header length measured in 32-bit units
SERVICE Level of service desired
TOTAL LENGTH Datagram length in octets including header
ID Unique value for this datagram
FLAGS Bits to control fragmentation
F. OFFSET Position of fragment in original datagram
TTL Time to live (hop countdown)
TYPE Contents of payload area
HDR CHECKSUM One’s-complement checksum over header
SOURCE IP address of original sender
DESTINATION IP address of ultimate destination
IP OPTIONS Special handling parameters
PADDING To make options a 32-bit multiple

NSD-Intel -- Chapt. 3

10 2004

| P addressing

e 32-bit Internet address assigned to each computer
e Virtual, hardware independent value
e Prefix identifies network; suffix identifies host

e Network systems use an address mask to specify the
boundary between prefix and suffix

NSD-Intel -- Chapt. 3 11 2004

Next-Hop Forwarding

e Routing table

— Found in both hosts and routers

— Stores (destination, mask, next_hop) tuples
e Route lookup

— Takes destination address as argument

— Finds next hop

— Uses longest-prefix match

NSD-Intel -- Chapt. 3 12 2004

Next-Hop Forwarding

e Routing table

— Found in both hosts and routers

— Stores (destination, mask, next_hop) tuples
e Route lookup

— Takes destination address as argument

— Finds next hop

— Uses longest-prefix match

NSD-Intel -- Chapt. 3 12 2004

UDP Datagram Format

0 16 31
SOURCE PORT DESTINATION PORT
MESSAGE LENGTH CHECKSUM
BEGINNING OF PAYLOAD
Field Meaning
SOURCE PORT ID of sending application

DESTINATION PORT ID of receiving application
MESSAGE LENGTH Length of datagram including the header
CHECKSUM One’s-complement checksum over entire datagram

NSD-Intel -- Chapt. 3

13 2004

TCP Segment Format

10

16 24 31

SOURCE PORT

DESTINATION PORT

SEQUENCE
ACKNOWLEDGEMENT
HLEN NOT USED CODE BITS WINDOW
CHECKSUM URGENT PTR
OPTIONS (MAY BE OMITTED) PADDING

BEGINNING OF PAYLOAD

e Sent end-to-end

e Fixed-size fields make parsing efficient

NSD-Intel -- Chapt. 3

14

2004

TCP Segment Fields

Field Meaning
SOURCE PORT ID of sending application
DESTINATION PORT ID of receiving application
SEQUENCE Sequence number for data in payload
ACKNOWLEDGEMENT Acknowledgement of data received
HLEN Header length measured in 32-bit units
NOT USED Currently unassigned
CODE BITS URGENT, ACK, PUSH, RESET, SYN, FIN
WINDOW Receiver’s buffer size for additional data
CHECKSUM One’s-complement checksum over entire segment
URGENT PTR Pointer to urgent data in segment
OPTIONS Special handling
PADDING To make options a 32-bit multiple

NSD-Intel -- Chapt. 3 15 2004

|llustration Of Encapsulation

UDP HEADER

UDP PAYLOAD

IP HEADER

IP PAYL

OAD

l

ETHERNET HDR.

ETHERNET PAYLOAD

e Field in each header specifies type of encapsulated packet

NSD-Intel -- Chapt. 3

16

2004

Example ARP Packet Format

0 8

16

24 31

ETHERNET ADDRESS TYPE (1)

IP ADDRESS TYPE (0800)

ETH ADDR LEN (6) IP ADDR LEN (4)

OPERATION

SENDER’S ETH ADDR (first 4 octets)

SENDER’S ETH ADDR (last 2 octets)

SENDER’S IP ADDR (first 2 octets)

SENDER’S IP ADDR (last 2 octets)

TARGET'S ETH ADDR (first 2 octets)

TARGET'S ETH ADDR (last 4 octets)

TARGET'S IP ADDR (all 4 octets)

e [Format when ARP used with Ethernet and IP

e [Each Ethernet address Is six octets

e Each IP address is four octets

NSD-Intel -- Chapt. 3

17

2004

End Of Review

|V

Conventional Computer Hardware Architecture

NSD-Intel -- Chapt. 4 1 2004

Softwar e-Based Network System

e Uses conventional hardware (e.g., PC)
e Software

— Runs the entire system

— Allocates memory

— Controls 1/0 devices

— Peaforms al protocol processing

NSD-Intel -- Chapt. 4 2 2004

Why Study Protocol Processing
On Conventional Hardware?

e Past
— Employed in early IP routers

— Many agorithms developed/ optimized for conventional
hardware

e Present
— Used in low-speed network systems
— Easiest to create/ modify

— Costs less than special-purpose hardware

NSD-Intel -- Chapt. 4 3 2004

Why Study Protocol Processing
On Conventional Hardwar e?
(continued)

e [uture
— Processors continue to increase in speed

— Some conventional hardware present in all systems

NSD-Intel -- Chapt. 4 4 2004

Why Study Protocol Processing
On Conventional Hardwar e?
(continued)

e [uture

NSD-Intel --

Processors continue to increase in speed
Some conventional hardware present in all systems

Y ou will build software-based systems in |ab!

Chapt. 4 4

2004

Serious Question

e Which is growing faster?
— Processing power
— Network bandwidth

e Note: if network bandwidth growing faster
— Need special-purpose hardware

— Conventiona hardware will become irrelevant

NSD-Intel -- Chapt. 4 5 2004

Growth Of Technologies

10 Gbps
[} 0OC-192
2.4 Gbps
10,000 —— oc-48 e °
e
.0
622 Mbps .
1,000 + OClZ Pent.-3GHz
bos e e o
100 Mbps . e -
FODI 7 e Pent.-400
........... ®
100 & Pent.-166
486-33 et o
............. 486-66
®
10 1+ o
10 Mpbs
Ethernet
| | | | | | | | | | | | | -
I I I I I I I I I I I I I o
1990 1992 1994 1996 1998 2000 2002
NSD-Intel -- Chapt. 4 6 2004

Conventional Computer Hardware

Four important aspects

Processor
Memory
/O interfaces

One or more buses

NSD-Intel -- Chapt. 4

2004

| llustration Of Conventional
Computer Architecture

CPU MEMORY
< bus >

~

network interfaces and other 1/0 devices

e Busis centra, shared interconnect

e All components contend for use

NSD-Intel -- Chapt. 4 7 2004

Bus Organization And Operations

) L J L J
' Y Y

control lines address lines data lines

e Parale wires (C+A+D total)

L

e Used to pass
— Control information (C bits)
— An address (A bits)
— A datavalue (D bits)

NSD-Intel -- Chapt. 4 8 2004

Bus Width

e Number of parallel data bits known as width of bus
e \Wider bus

— Transfers more data per unit time

— Costs more

— Requires more physical space

e Compromise: to simulate wider bus, use hardware that
multiplexes transfers

NSD-Intel -- Chapt. 4 9 2004

Bus Paradigm

e Only two basic operations
— Fetch

— Store

e All operations cast as forms of the above

NSD-Intel -- Chapt. 4 10 2004

Fetch/Store

e [Fundamental paradigm

e Used throughout hardware, including network processors

NSD-Intel -- Chapt. 4 11 2004

Fetch Operation

e Place address of a device on address lines
e |ssue fetch on control lines

e Use control lines to wait for device that owns the address to
respond

e |f operation successful, extract value (response) from data
lines

e |f not successful, report error

NSD-Intel -- Chapt. 4 12 2004

Store Operation

e Place address of a device on address lines
e Place value on data lines
e |ssue store on control lines

e Use control lines to wait for device that owns the address to
respond

e |f operation does not succeed, report error

NSD-Intel -- Chapt. 4 13 2004

Example Of Operations M apped
Into Fetch/Store Paradigm

e |magine disk device attached to a bus

e Assume disk hardware supports three (nontransfer)
operations:

— Start disk spinning
— Stop disk

— Determine current status

NSD-Intel -- Chapt. 4 14 2004

Example Of Operations M apped
Into Fetch/Store Paradigm
(continued)

e Assign the disk two contiguous bus addresses D and D+1

e Arrange for store of nonzero to address D to start disk
spinning

e Arrange for store of zero to address D to stop disk

e Arrange for fetch from address D+1 to return current status

e Note: effect of store to address D+1 can be defined as

— Appears to work, but has no effect

— Returns an error

NSD-Intel -- Chapt. 4 15 2004

Bus Address Space

e Arbitrary hardware can be attached to bus
e K address lines result in 2% possible bus addresses
e Address can refer to
— Memory (e.g., RAM or ROM)
— 1/O device
e Arbitrary devices can be placed at arbitrary addresses

e Address space can contain ‘‘holes’

NSD-Intel -- Chapt. 4 16 2004

Bus Address Ter minology

e Device on bus known as memory mapped |1/0

e | ocations that correspond to nontransfer operations known
as Control and Satus Registers (CSRs)

NSD-Intel -- Chapt. 4 17 2004

Example Bus Address Space

highest bus address ——»
disk
NIC
memory
lowest bus address ——»

NSD-Intel -- Chapt. 4 18

<«—— hole (unassigned)

<«—— hole (unassigned)

<«—— hole (unassigned)

2004

Network 1 /O On
Conventional Hardware

e Network Interface Card (NIC)
— Attaches between bus and network
— Operates like other 1/0 devices
— Handles electrical/optical details of network
— Handles electrical details of bus

— Communicates over bus with CPU or other devices

NSD-Intel -- Chapt. 4 19 2004

Making Network | /0O Fast

e Key idea: migrate more functionality onto NIC
e [our techniques used with bus

— Onboard address recognition & filtering

— Onboard packet buffering

— Direct Memory Access (DMA)

— Operation and buffer chaining

NSD-Intel -- Chapt. 4 20 2004

Onboard Address Recognition And Filtering

e NIC given set of addresses to accept
— Station’s unicast address
— Network broadcast address
— Zero or more multicast addresses
e When packet arrives, NIC checks destination address
— Accept packet If address on list

— Discard others

NSD-Intel -- Chapt. 4 21 2004

Onboard Packet Buffering

e NIC given high-speed local memory
e |ncoming packet placed in NIC's memory

e Allows computer’s memory/bus to operate slower than
network

e Handles small packet bursts

NSD-Intel -- Chapt. 4 22 2004

Direct Memory Access (DMA)

e CPU
— Allocates packet buffer in memory
— Passes buffer address to NIC
— (Goes on with other computation
e NIC
— Accepts incoming packet from network
— Copies packet over bus to buffer in memory

— Informs CPU that packet has arrived

NSD-Intel -- Chapt. 4 23 2004

Buffer Chaining

e CPU
— Allocates multiple buffers
— Passes linked list to NIC
e NIC
— Recelves next packet
— Divides into one or more buffers

e Advantage: a buffer can be smaller than a packet

NSD-Intel -- Chapt. 4 24 2004

Operation Chaining

e CPU
— Allocates multiple buffers
— Builds linked list of operations
— Passeslist to NIC
e NIC
— Follows list and performs instructions
— Interrupts CPU after each operation

e Advantage: multiple operations proceed without CPU
Intervention

NSD-Intel -- Chapt. 4 25 2004

lllustration Of
Operation Chaining

| packet buffer | | packet buffer | | packet buffer

e Optimizes movement of data to memory

NSD-Intel -- Chapt. 4 26 2004

Data Flow Diagram

NIC
data leaves ~—

data arrives ~ :

)
G

memory

e Depicts flow of data through hardware units

e Size of arrow represents throughput

e Used throughout the course and text

NSD-Intel -- Chapt. 4

27

2004

Summary

e Software-based network systems run on conventional
hardware

— Processor

— Memory

— 1/0O devices
— Bus

e Network interface cards can be optimized to reduce CPU
load

NSD-Intel -- Chapt. 4 28 2004

Questions?

V

Basic Packet Processing:
Algorithms And Data Structures

NSD-Intel -- Chapt. 5 1 2004

Copying
e Used when packet moved from one memory location to
another
e EXpensive
e Must be avoided whenever possible
— Leave packet in buffer

— Pass buffer address among threads/layers

NSD-Intel -- Chapt. 5 2 2004

Possibilities For Buffer Allocation

e Fixed-sze buffers
* Large enough for largest packet

* Small, with bultiple buffers linked together for large
packets

o Variable-size buffers

NSD-Intel -- Chapt. 5 3 2004

Buffer Addressing

e Buffer address must be resolvable in all contexts

e Easiest implementation: keep buffers in kernel space

NSD-Intel -- Chapt. 5 4 2004

|nteger Representation

e Two standards
— Little endian (least-significant byte at lowest address)

— Big endian (most-significant byte at lowest address)

NSD-Intel -- Chapt. 5 5 2004

lllustration Of Big And
Little Endian Integers

increasing memory addresses

o

i1 2 3 4

little endian

increasing memory addresses

 _al

4 3 2 1

big endian

NSD-Intel -- Chapt. 5 6 2004

e Needed when heterogeneous computers communicate

|nteger Conversion

e Protocols define network byte order

e Computers convert to network byte order

e Typica library functions

Function data size Translation

ntohs 16 bits Network byte order to host’s byte order
htons 16 bits Host’s byte order to network byte order
ntohl 32 bits Network byte order to host’s byte order
htonl 32 bits Host’s byte order to network byte order

NSD-Intel -- Chapt. 5

2004

Examples Of Algorithms | mplemented
With Software-Based Systems

e Layer?2
— Ethernet bridge
e Layer3
— |P forwarding
— |P fragmentation and reassembly
e |Layer4
— TCP connection recognition and splicing
e Other
— Hash table lookup

NSD-Intel -- Chapt. 5 8 2004

Why Study These Algorithms?

NSD-Intel -- Chapt. 5 9 2004

Why Study These Algorithms?

e Provide insight to packet processing tasks

NSD-Intel -- Chapt. 5 9 2004

Why Study These Algorithms?

e Provide insight to packet processing tasks

e Renforce concepts

NSD-Intel -- Chapt. 5 9 2004

Why Study These Algorithms?

e Provide insight to packet processing tasks
e Renforce concepts

e Help students recall protocol details

NSD-Intel -- Chapt. 5 9 2004

Why Study These Algorithms?

e Provide insight to packet processing tasks
e Renforce concepts

e Help students recall protocol details

e Youwill need them in lab!

NSD-Intel -- Chapt. 5 9 2004

Ethernet Bridge

Ethernet 1 Ethernet 2

BRIDGE

e Used between a pair of Ethernets

e Provides transparent, layer 2 connection
e Listensin promiscuous mode

e Forwards frames in both directions

o Uses addresses to filter

NSD-Intel -- Chapt. 5 9 2004

Bridge Filtering

e Uses source address in frames to identify computers on each
network

e Uses destination address to decide whether to forward frame

NSD-Intel -- Chapt. 5 10 2004

Bridge Algorithm

Assume: two network interfaces each operating in promiscuous
mode.

Create an empty list, L, that will contain pairs of values;
Do forever {
Acquire the next frame to arrive;
Set | to the interface over which the frame arrived,
Extract the source address, S;
Extract the destination address, D;
Add the pair (S, I) to list L if not already present.
If the pair (D, |) appears inlist L {
Drop the frame;
} Else {
Forward the frame over the other interface;

}

NSD-Intel -- Chapt. 5 11 2004

| mplementation Of Table L ookup

e Need high speed (more on this later)

e Software-based systems typically use hashing for table
lookup

NSD-Intel -- Chapt. 5 12 2004

Hashing

e Optimizes number of probes
e Works well if table not full
e Practical technique: double hashing

NSD-Intel -- Chapt. 5 13 2004

Hashing Algorithm

Given: a key, a table in memory, and the table size N.

Produce: a slot in the table that corresponds to the key
or an empty table slot if the key is not in the table.

Method: double hashing with open addressing.

Choose P, and P, to be prime numbers;

Fold the key to produce an integer, K;

Compute table pointer Q equal to (P41 xK) modulo N;

Compute increment R equal to (P, xK) modulo N;

While (table slot Q not equal to K and nonempty) {
Q <« (Q + R) modulo N;

}

At this point, Q either points to an empty table slot or to the
slot containing the key.

NSD-Intel -- Chapt. 5 14 2004

Address L ookup

e Computer can compare integer in one operation
e Network address can be longer than integer (e.g., 48 bits)
e Two possihilities

— Use multiple comparisons per probe

— Fold address into integer key

NSD-Intel -- Chapt. 5 15 2004

Folding

e Maps N-bit value into M-bit key, M <N
e Typical technique: exclusive or
e Potential problem: two values map to same key

e Solution: compare full value when key matches

NSD-Intel -- Chapt. 5 16 2004

|P Forwarding

e Used in hosts as well as routers

e Conceptual mapping
(next hop, interface) — f(datagram, routing table)

e Tabledriven

NSD-Intel -- Chapt. 5 17 2004

|P Routing Table

e One entry per destination

e Entry contains
— 32-bit IP address of destination
— 32-bit address mask
— 32-bit next-hop address

— N-hit interface number

NSD-Intel -- Chapt. 5 18 2004

Example IP Routing Table

Destination Address Next-Hop Interface
Address Mask Address Number
192.5.48.0 255.255.255.0 128.210.30.5 2
128.10.0.0 255.255.0.0 128.210.141.12 1
0.0.0.0 0.0.0.0 128.210.30.5 2

e Values stored in binary
e [nterface number is for internal use only

e Zero mask produces default route

NSD-Intel -- Chapt. 5 19 2004

| P Forwarding Algorithm

Given: destination address A and routing table R.

Find: a next hop and interface used to route datagrams to A.
For each entry in table R {

Set MASK to the Address Mask in the entry;
Set DEST to the Destination Address in the entry;
If (A & MASK) == DEST {
Stop; use the next hop and interface in the entry;

}
}

If this point is reached, declare error: no route exists;

e Note: agorithm assumes table is sorted in longest-prefix
order

NSD-Intel -- Chapt. 5 20 2004

|P Fragmentation

e Needed when datagram larger than network MTU

e Divides |P datagram into fragments

e Uses FLAGS hits in datagram header

NSD-Intel -- Chapt. 5

0 D M

L=

<«—— FLAGS bits

0 = last fragment; 1 = more fragments
0 = may fragment; 1 = do not fragment

Reserved (must be zero)

21

2004

| P Fragmentation Algorithm
(Part 1. Initialization)

Given: an IP datagram, D, and a network MTU.
Produce: a set of fragments for D.
If the DO NOT FRAGMENT bit is set {

Stop and report an error;

}

Compute the size of the datagram header, H;
Choose N to be the largest multiple of 8 such

that H+N<MTU;
Initialize an offset counter, O, to zero;

NSD-Intel -- Chapt. 5 22 2004

| P Fragmentation Algorithm
(Part 2: Processing)

Repeat until datagram empty {
Create a new fragment that has a copy of D’s header;
Extract up to the next N octets of data from D and place
the data in the fragment;
Set the MORE FRAGMENTS bit in fragment header;
Set TOTAL LENGTH field in fragment header to be H+N;
Set FRAGMENT OFFSET field in fragment header to O;
Compute and set the CHECKSUM field in fragment
header;
Increment O by N/8;

NSD-Intel -- Chapt. 5 23 2004

Reassembly

e Complement of fragmentation

e UsesIP SOURCE ADDRESS and IDENTIFICATION fields
In datagram header to group related fragments

e Joins fragments to form original datagram

NSD-Intel -- Chapt. 5 24 2004

Reassembly Algorithm

Given: a fragment, F, add to a partial reassembly.
Method: maintain a set of fragments for each datagram.
Extract the IP source address, S, and ID fields from F;
Combine S and ID to produce a lookup key, K;
Find the fragment set with key K or create a new set;
Insert F into the set;
If the set contains all the data for the datagram {
Form a completely reassembled datagram and process it;

NSD-Intel -- Chapt. 5 25 2004

Data Structure For Reassembly

e Two parts
— Buffer large enough to hold original datagram
— Linked list of pieces that have arrived

1 [40] 1 [80] 1 [40]A]

reassembly buffer fragment in

/ reassembly buffer

NSD-Intel -- Chapt. 5 26 2004

TCP Connection

e |nvolves a pair of endpoints

e Started with SYN segment

e Terminated with FIN or RESET segment
e |dentified by 4-tuple

(src addr, dest addr, src port, dest port)

NSD-Intel -- Chapt. 5 27 2004

TCP Connection Recognition Algorithm
(Part 1)

Given: a copy of traffic passing across a network.
Produce: a record of TCP connections present in the traffic.
Initialize a connection table, C, to empty;
For each IP datagram that carries a TCP segment {
Extract the IP source, S, and destination, D, addresses;
Extract the source, P4, and destination, P,, port numbers;

Use (S,D,P4,P5,) as a lookup key for table C and
create a new entry, if needed,;

NSD-Intel -- Chapt. 5 28 2004

TCP Connection Recognition Algorithm
(Part 2)

If the segment has the RESET bit set, delete the entry;

Else if the segment has the FIN bit set, mark the
connection

closed in one direction, removing the entry from C if
the connection was previously closed in the other;

Else if the segment has the SYN bit set, mark the
connection as

being established in one direction, making it completely
established if it was previously marked as being
established in the other;

NSD-Intel -- Chapt. 5 29 2004

TCP Splicing

e Join two TCP connections
e Allow datato pass between them

e To avoid termination overhead translate segment header
fields

— Acknowledgement number

— Seguence number

NSD-Intel -- Chapt. 5 30 2004

lllustration Of TCP Splicing

Host TCP connection #1 : TCP connection #2 Host
A splicer B
sequence 200 sequence 50 sequence 860 sequence 1200
Connection Sequence Connection Sequence
& Direction Number & Direction Number
Incoming #1 200 Incoming #2 1200
Outgoing #2 860 Outgoing #1 50

Change 660 Change -1150

NSD-Intel -- Chapt. 5 31 2004

TCP Splicing Algorithm
(Part 1)

Given: two TCP connections.

Produce: sequence translations for splicing the connection.

Compute D1, the difference between the starting sequences
on incoming connection 1 and outgoing connection 2;

Compute D2, the difference between the starting sequences
on incoming connection 2 and outgoing connection 1,

NSD-Intel -- Chapt. 5 32 2004

TCP Splicing Algorithm
(Part 2)

For each segment {

If segment arrived on connection 1 {

Add D1 to sequence number;

Subtract D2 from acknowledgement number;
} else if segment arrived on connection 2 {

Add D2 to sequence number;
Subtract D1 from acknowledgement number;

NSD-Intel -- Chapt. 5 33 2004

Summary

e Packet processing algorithms include
— Ethernet bridging
— |P fragmentation and reassembly
— IP forwarding
— TCP splicing

e Table lookup important
— Full match for layer 2
— Longest prefix match for layer 3

NSD-Intel -- Chapt. 5 34 2004

Questions?

For Hands-On Experience With

A Software-Based System:

Enroll iIn CS636!

NSD-Intel -- Chapt. 5 36 2004

\A

Packet Processing Functions

NSD-Intel -- Chapt. 6 1 2004

Goal

e |dentify functions that occur in packet processing
e Devise set of operations sufficient for all packet processing

e Find an efficient implementation for the operations

NSD-Intel -- Chapt. 6 2 2004

Packet Processing Functions We Will Consider

e Address lookup and packet forwarding

e Error detection and correction

e Fragmentation, segmentation, and reassembly
e Frame and protocol demultiplexing

e Packet classification

e (Queueing and packet discard

e Scheduling and timing

e Security: authentication and privacy

e Traffic measurement, policing, and shaping

NSD-Intel -- Chapt. 6 3 2004

Address Lookup And Packet Forwarding

e Forwarding reguires address lookup
e Lookup is table driven
e Two types
— Exact match (typically layer 2)
— Longest-prefix match (typically layer 3)
e Cost depends on size of table and type of lookup

NSD-Intel -- Chapt. 6 4 2004

Error Detection And Correction

e Data sent with packet used as verification
— Checksum
— CRC

e Cost proportional to size of packet

e Often implemented with special-purpose hardware

NSD-Intel -- Chapt. 6 5 2004

An Important Note About Cost

The cost of an operation is proportional to the amount of data
processed. An operation such as checksum computation that

requires examination of all the data in a packet is among the
most expensive.

NSD-Intel -- Chapt. 6 6 2004

Fragmentation, Segmentation, And Reassembly

e |P fragments and reassembles datagrams
e ATM segments and reassembles AALS packets
e Same idea; details differ
e Cost is high because
— State must be kept and managed

— Unreassembled fragments occupy memory

NSD-Intel -- Chapt. 6 7 2004

Frame And Protocol Demultiplexing

e Traditiona technique used in layered protocols
e Type appears in each header

— Assigned on output

— Used on input to select *‘next’’ protocol

e Cost of demultiplexing proportional to number of layers

NSD-Intel -- Chapt. 6 8 2004

Packet Classification

e Alternative to demultiplexing
e Crosses multiple layers
e Achieves |lower cost

e More on classification later in the course

NSD-Intel -- Chapt. 6 9 2004

Queueing And Packet Discard

e General paradigm is store-and-forward
— Incoming packet placed in queue
— Outgoing packet placed in queue
e When queue is full, choose packet to discard

e Affects throughput of higher-layer protocols

NSD-Intel -- Chapt. 6 10 2004

Queueing Priorities

e Multiple queues used to enforce priority among packets
e |ncoming packet

— Assigned priority as function of contents

— Placed in appropriate priority queue
e Queueing discipline

— Examines priority queues

— Chooses which packet to send

NSD-Intel -- Chapt. 6 11 2004

Examples Of Queueing Disciplines

e Priority Queueing
— Assign unique priority number to each queue

— Choose packet from highest priority queue that Is
nonempty

— Known as strict priority queueing

— Can lead to starvation

NSD-Intel -- Chapt. 6 12 2004

Examples Of Queueing Disciplines
(continued)

e Waeaghted Round Robin (WRR)
— Assign unique priority number to each queue
— Process al queues round-robin

— Compute N, max number of packets to select from a
gueue proportional to priority

— Take up to N packets before moving to next queue

— Works well if all packets equal size

NSD-Intel -- Chapt. 6 13 2004

Examples Of Queueing Disciplines
(continued)

e Weighted Fair Queueing (WFQ)

NSD-Intel --

Make selection from queue proportional to priority
Use packet size rather than number of packets

Allocates priority to amount of data from a queue rather
than number of packets

Chapt. 6 14 2004

Scheduling And Timing

e |mportant mechanisms

e Used to coordinate parallel and concurrent tasks
— Processing on multiple packets
— Processing on multiple protocols
— Multiple processors

e Scheduler attempts to achieve fairness

NSD-Intel -- Chapt. 6 15 2004

Security: Authentication And Privacy

e Authentication mechanisms
— Ensure sender’ s identity
e Confidentiality mechanisms

— Ensure that intermediaries cannot interpret packet
contents

e Note: in common networking terminology, privacy refers to
confidentiality

— Example: Virtua Private Networks

NSD-Intel -- Chapt. 6 16 2004

Traffic Measurement And Policing

e Used by network managers

e (Can measure aggregate traffic or per-flow traffic
e Often related to Service Level Agreement (SLA)
e Cost ishigh if performed in real-time

NSD-Intel -- Chapt. 6 17 2004

Traffic Shaping

e Make traffic conform to statistical bounds
e Typical use

— Smooth bursts

— Avoid packet trains
e Only possibilities

— Discard packets (seldom used)

— Delay packets

NSD-Intel -- Chapt. 6 18 2004

Example Traffic Shaping M echanisms

e | eaky bucket
— Easy to implement
— Popular
— Sends steady number of packets per second
— Rate depends on number of packets waiting

— Does not guarantee steady data rate

NSD-Intel -- Chapt. 6 19 2004

Example Traffic Shaping M echanisms
(continued)

e Token bucket
— Sends steady number of bits per second
— Rate depends on number of bits waiting
— Achieves steady data rate

— More difficult to implement

NSD-Intel -- Chapt. 6 20 2004

Illustration Of Traffic Shaper

packet queue

forwards packets at
a steady rate

|

packets
arrive

R

e Packets
— Arrive in bursts

— Leave a steady rate

NSD-Intel -- Chapt. 6 21

ackets
eave

2004

Timer Management

e Fundamental piece of network system
e Needed for

— Scheduling

— Traffic shaping

— Other protocol processing (e.g., retransmission)
e Cost

— Depends on number of timer operations (e.g., Set,
cancel)

— Can be high

NSD-Intel -- Chapt. 6 22 2004

Summary

e Primary packet processing functions are
— Address |lookup and forwarding
— Error detection and correction
— Fragmentation and reassembly
— Demultiplexing and classification
— Queueing and discard
— Scheduling and timing
— Security functions

— Traffic measurement, policing, and shaping

NSD-Intel -- Chapt. 6 23 2004

Questions?

VI

Protocol Software On A
Conventional Processor

NSD-Intel -- Chapt. 7 1 2004

Possible | mplementations Of
Protocol Software

e |n an application program
— Easy to program
— Runs as user-level process
— No direct access to network devices
— High cost to copy data from kernel address space
— Cannot run at wire speed

NSD-Intel -- Chapt. 7 2 2004

Possible | mplementations Of
Protocol Software
(continued)

e |n an embedded system

Special-purpose hardware device
Dedicated to specific task
|deal for stand-alone system

Software has full control

NSD-Intel -- Chapt. 7 3

2004

Possible | mplementations Of
Protocol Software
(continued)

e |n an embedded system

NSD-Intel --

Special-purpose hardware device
Dedicated to specific task

|deal for stand-alone system
Software has full control

Y ou will experience this in lab!

Chapt. 7 3

2004

Possible | mplementations Of
Protocol Software
(continued)

e |n an operating system kernel
— More difficult to program than application
— Runs with kernel privilege

— Direct access to network devices

NSD-Intel -- Chapt. 7 4 2004

| nterface To The Network

e Known as Application Program Interface (API)
e (Can be

— Asynchronous

— Synchronous
e Synchronous interface can use

— Blocking

— Poalling

NSD-Intel -- Chapt. 7 5 2004

Asynchronous API

e Also known as event-driven
e Programmer
— Writes set of functions
— Specifies which function to invoke for each event type
e Programmer has no control over function invocation
e Functions keep state in shared memory
e Difficult to program

e Example: function f() called when packet arrives

NSD-Intel -- Chapt. 7 6 2004

Synchronous APl Using Blocking

e Programmer
— Writes main flow-of-control
— Explicitly invokes functions as needed
— Built-in functions block until request satisfied

e Example: function wait_for_packet() blocks until packet
arrives

e FEasier to program

NSD-Intel -- Chapt. 7 7 2004

Synchronous API Using Palling

e Nonblocking form of synchronous API
e Each function call returns immediately
— Performs operation If available

— Returns error code otherwise

e Example: function try for packet() either returns next
packet or error code if no packet has arrived

e Closer to underlying hardware

NSD-Intel -- Chapt. 7 8 2004

Typical Implementations And APIs

e Application program
— Synchronous API using blocking (e.g., socket API)

— Another application thread runs while an application
blocks

e Embedded systems
— Synchronous API using polling
— CPU dedicated to one task

e QOperating systems
— Asynchronous API

— Built on interrupt mechanism

NSD-Intel -- Chapt. 7 9 2004

Example Asynchronous API

e Design goals

— For use with network processor

— Simplest possible interface

— Sufficient for basic packet processing tasks
e |ncludes

— 1/0O functions

— Timer manipulation functions

NSD-Intel -- Chapt. 7 10 2004

Example Asynchronous API
(continued)

e |nitialization and termination functions
— on_startup()
— on_shutdown()

e [nput function (called asynchronoudly)
— recv_frame()

e OQutput functions
— new_fbuf()

— send frame()

NSD-Intel -- Chapt. 7 11 2004

Example Asynchronous API
(continued)

e Timer functions (called asynchronously)
— delayed cal()
— periodic_call()
— cancd_call()

e |nvoked by outside application

— console_command()

NSD-Intel -- Chapt. 7 12 2004

Processing Priorities

e Determine which code CPU runs a any time
e Generd idea

— Hardware devices need highest priority

— Protocol software has medium priority

— Application programs have lowest priority

e (Queues provide buffering across priorities

NSD-Intel -- Chapt. 7 13 2004

| llustration Of Priorities

Applications

protocol
processing

packet queue
between levels — | ——a

device drivers
handling frames

NIC, NIC,

NSD-Intel -- Chapt. 7 14

<—— |owest priority

<—— medium priority

<—— highest priority

2004

| mplementation Of Priorities
In An Operating System

e Two possible approaches
— Interrupt mechanism

— Kernd threads

NSD-Intel -- Chapt. 7 15 2004

Interrupt Mechanism

e Built into hardware

e Operates asynchronously

e Saves current processing state
e Changes processor status

e Branches to specified location

NSD-Intel -- Chapt. 7 16 2004

Two Types Of Interrupts

e Hardware interrupt
— Caused by device (bus)
— Must be serviced quickly
e Software interrupt
— Caused by executing program
— Lower priority than hardware interrupt

— Higher priority than other OS code

NSD-Intel -- Chapt. 7 17 2004

Software Interrupts And
Protocol Code

e Protocol stack operates as software interrupt
e \When packet arrives

— Hardware interrupts

— Device driver raises software interrupt
e \When device driver finishes

— Hardware interrupt clears

— Protocol code is invoked

NSD-Intel -- Chapt. 7 18 2004

Kernd Threads

e Alternative to interrupts
e Familiar to programmer
e Finer-grain control than software interrupts

e (Can be assigned arbitrary range of priorities

NSD-Intel -- Chapt. 7 19 2004

Conceptual Organization

e Packet passes among multiple threads of control
e Queue of packets between each pair of threads

e Threads synchronize to access queues

NSD-Intel -- Chapt. 7 20 2004

Possible Organization Of
Kernel Threads For Layered Protocols

e One thread per layer
e One thread per protocol
e Multiple threads per protocol

e Multiple threads per protocol plus timer management
thread(s)

e One thread per packet

NSD-Intel -- Chapt. 7 21 2004

One Thread Per Layer

e FEasy for programmer to understand
e |mplementation matches concept
e Allows priority to be assigned to each layer

e Means packet is enqueued once per layer

NSD-Intel -- Chapt. 7 22 2004

lllustration Of One Thread Per Layer

applications
app. sends ———» T <1—— app. receives

i - Layer 4

<«— Layer 3

N MWL
Qéw _/épu

<— Layer 2

packets arrive ———» <— packets leave

NSD-Intel -- Chapt. 7 23 2004

One Thread Per Protocol

e Like one thread per layer

— Implementation matches concept

— Means packet is enqueued once per layer
e Advantages over one thread per layer

— Easier for programmer to understand

— Finer-grain control

— Allows priority to be assigned to each protocol

NSD-Intel -- Chapt. 7 24 2004

| llustration Of One Thread Per Protocol

applications

queue ‘ queue ‘
. Y, - @ J
. \{ e \\

e TCP and UDP reside at same layer
e Separation alows priority

NSD-Intel -- Chapt. 7 25 2004

Multiple Threads Per Protocol

e Further divison of duties
e Simplifies programming
e More control than single thread
e Typica division
— Thread for incoming packets
— Thread for outgoing packets
— Thread for management/timing

NSD-Intel -- Chapt. 7 26 2004

Illustration Of Multiple
Threads Used With TCP

applications

queue

NG, J
— P
tnmythmnd-——+-‘ﬂi’ l

e Separate timer makes programming easier

NSD-Intel -- Chapt. 7 27 2004

Timers And Protocols

e Many protocols implement timeouts
— TCP
* Retransmission timeout
* 2MSL timeout
— ARP
* Cache entry timeout
— IP

* Reassembly timeout

NSD-Intel -- Chapt. 7 28

2004

Multiple Threads Per Protocol
Plus Timer Management Thread(s)

e (Observations

— Many protocols each need timer functionality
— Each timer thread incurs overhead

e Solution: consolidate timers for multiple protocols

NSD-Intel -- Chapt. 7 29 2004

|sOne Timer Thread Sufficient?

e |ntheory
— Yes
e |n practice

— Large range of timeouts (microseconds to tens of
seconds)

— May want to give priority to some timeouts

e Solution; two or more timer threads

NSD-Intel -- Chapt. 7 30 2004

Multiple Timer Threads

e Two threads usually suffice
e |arge-granularity timer
— Values specified in seconds
— Operates at lower priority
e Small-granularity timer
— Vaues specified in microseconds

— Operates at higher priority

NSD-Intel -- Chapt. 7 31 2004

Thread Synchronization

e Thread for layer |
— Needs to pass a packet to layer i + 1
— Enqueues the packet

e Thread for layeri+ 1

— Retrieves packet from the queue

NSD-Intel -- Chapt. 7 32 2004

Thread Synchronization

e Thread for layer |
— Needs to pass a packet to layer i + 1
— Enqueues the packet

e Thread for layeri+ 1
— Retrieves packet from the queue

e Context switch required!

NSD-Intel -- Chapt. 7 32 2004

Context Switch

e (S function
e CPU passes from current thread to a waiting thread
e High cost

e Must be minimized

NSD-Intel -- Chapt. 7 33 2004

One Thread Per Packet

e Preallocate set of threads

e Thread operation
— Waits for packet to arrive
— Moves through protocol stack
— Returns to wait for next packet

e Minimizes context switches

NSD-Intel -- Chapt. 7 34 2004

Summary

e Packet processing software usually runs in OS
e APl can be synchronous or asynchronous
e Priorities achieved with
— Software interrupts
— Threads
e Variety of thread architectures possible

NSD-Intel -- Chapt. 7 35

2004

Questions?

NSD-Intel -- Chapt. 8

VIII

Hardware Architectures
For Protocol Processing
And
Aggregate Rates

2004

A Brief History Of
Computer Hardware

e 1940s
— Beginnings
e 1950s
— Consolidation of von Neumann architecture
— |/O controlled by CPU
e 1960s
— |1/O becomes important

— Evolution of third generation architecture with interrupts

NSD-Intel -- Chapt. 8 2 2004

| /O Processing

e Evolved from after-thought to central influence
e | ow-end systems (e.g., microcontrollers)

— Dumb 1/0O interfaces

— CPU does all the work (polls devices)

— Single, shared memory

— Low cost, but low speed

NSD-Intel -- Chapt. 8 3 2004

| /O Processing
(continued)

e Mid-range systems (e.g., minicomputers)
— Single, shared memory

— 1/O interfaces contain logic for transfer and status
operations

- CPU

* Starts device then resumes processing
— Device

* Transfers data to/ from memory

* Interrupts when operation complete

NSD-Intel -- Chapt. 8 4 2004

| /O Processing
(continued)

e High-end systems (e.g., mainframes)
— Separate, programmable | /O processor
— OS downloads code to be run
— Device has private on-board buffer memory

— Examples: IBM channel, CDC peripheral processor

NSD-Intel -- Chapt. 8 5 2004

Networ king Systems Evolution

e Twenty year history

e Same trend as computer architecture
— Began with central CPU
— Shift to emphasison |/O

e Three main generations

NSD-Intel -- Chapt. 8 6 2004

First Generation Network Systems

e Traditional software-based router

e Used conventional (minicomputer) hardware
— Single general-purpose processor
— Single shared memory
— 1/O over abus

— Network interface cards use same design as other 1/0
devices

NSD-Intel -- Chapt. 8 7 2004

Protocol Processing In
First Generation Network Systems

NI\C1 StandaId CPU NI\C2
framing & framing &
address l othgr address
recognition lrieiEssinl recognition

e General-purpose processor handles most tasks
e Sufficient for low-speed systems

e Note: we will examine other generations later in the course

NSD-Intel -- Chapt. 8 8 2004

How Fast Does A CPU Need To Be?

e Dependson
— Rate at which data arrives

— Amount of processing to be performed

NSD-Intel -- Chapt. 8 9 2004

Two Measures Of Speed

e Datarate (bits per second)
— Per interface rate
— Aggregate rate

e Packet rate (packets per second)
— Pe interface rate

— Aggregate rate

NSD-Intel -- Chapt. 8 10 2004

How Fast Is A Fast Connection?

e Definition of fast data rate keeps changing
— 1960: 10 Kbps
— 1970: 1 Mbps
— 1980: 10 Mbps
— 1990: 100 Mbps
— 2000: 1000 Mbps (1 Gbps)
— 2004: 2400 Mbps

NSD-Intel -- Chapt. 8 11 2004

e Definition of fast data rate keeps changing
1960:
1970:
1980:
1990:
2000:
2004.
Soon:

How Fast Is A Fast Connection?

NSD-Intel -- Chapt. 8

10 Kbps
1 Mbps
10 Mbps
100 Mbps

1000 Mbps (1 Gbps)

2400 Mbps
10 Gbps???

12

2004

Aggregate Rate Vs.
Per -l nterface Rate

e |[nterfacerate
— Rate at which data enters/leaves
e Aggregate
— Sum of interface rates
— Measure of total data rate system can handle

e Note: aggregate rate crucial if CPU handles traffic from all
Interfaces

NSD-Intel -- Chapt. 8 12 2004

A Note About System Scale

The aggregate data rate is defined to be the sum of the rates at
which traffic enters or leaves a system. The maximum
aggregate data rate of a system is important because it limits

the type and number of network connections the system can
handle.

NSD-Intel -- Chapt. 8 13 2004

Packet Rate Vs. Data Rate

e Sources of CPU overhead
— Per-bit processing
— Per-packet processing

e [nterface hardware handles much of per-bit processing

NSD-Intel -- Chapt. 8 14 2004

A Note About System Scale

For protocol processing tasks that have a fixed cost per packet,
the number of packets processed is more important than the
aggregate data rate.

NSD-Intel -- Chapt. 8 15 2004

Example Packet Rates

Technology Network Packet Rate Packet Rate
Data Rate For Small Packets For Large Packets
In Gbps In Kpps In Kpps
10Base-T 0.010 19.5 0.8
100Base-T 0.100 195.3 8.2
OC-3 0.156 303.8 12.8
0OC-12 0.622 1,214.8 51.2
1000Base-T 1.000 1,953.1 82.3
0C-48 2.488 4,860.0 204.9
0C-192 9.953 19,440.0 819.6
OC-768 39.813 77,760.0 3,278.4

e Key concept: maximum packet rate occurs with minimum-

Size packets

NSD-Intel -- Chapt. 8

16

2004

Bar

10° Kpps -

104 Kpps -

102 Kpps -

102 Kpps -

101 Kpps -

100 Kpps -

Chart Of Example Packet Rates

303.8

195.3
19.5 I

1953.1

1214.8

77760.0

19440.0

4860.0

NSD-Intel -- Chapt. 8

10Base-T 100Base-T 0OC-3

OC-12 1000Base-T 0OC-48

17

0C-192 0OC-768

2004

Bar Chart Of Example Packet Rates

)
10° Kpps + 77760.0
19440.0
L s == 4860.0
1953.1 —
1214.8
102 Kpps -} '
303.8
195.3
102 Kpps -} S
19.5 -
101 Kpps + o '
10°Kpps + |

>
10Base-T 100Base-T OC-3 OC-12 1000Base-T 0OC-48 0OC-192 OC-768

e Gray areas show rates for large packets

NSD-Intel -- Chapt. 8 17 2004

Time Per Packet

Technology Time per packet Time per packet
for small packets for large packets

(inps) (inps)
10Base-T 51.20 1,214.40
100Base-T 5.12 121.44
OC-3 3.29 78.09
OC-12 0.82 19.52
1000Base-T 0.51 12.14
OC-48 0.21 4.88
OC-192 0.05 1.22
OC-768 0.01 0.31

e Note: these numbers are for a single connection!

NSD-Intel -- Chapt. 8 18 2004

Conclusion

Software running on a general-purpose processor Is an
Insufficient architecture to handle high-speed networks because
the aggregate packet rate exceeds the capabilities of a CPU.

NSD-Intel -- Chapt. 8 19 2004

Possible Ways To Solve
The CPU Bottleneck

e Fine-grain parallelism

e Symmeltric coarse-grain paralelism
e Asymmetric coarse-grain parallelism
e Special-purpose Coprocessors

e NICs with onboard processing

e Smart NICs with onboard stacks

e Cadll switching

e Data pipelines

NSD-Intel -- Chapt. 8 20

2004

Fine-Grain Parallelism

e Multiple processors
e [nstruction-level parallelism
e Example:

— Parallel checksum: add values of eight consecutive
memory locations at the same time

e Assessment: insignificant advantages for packet processing

NSD-Intel -- Chapt. 8 21 2004

Symmetric Coarse-Grain Parallelism

e Symmetric multiprocessor hardware

— Multiple, identical processors
e Typical design: each CPU operates on one packet
e Requires coordination

e Assessment: coordination and data access means N
processors cannot handle N times more packets than one
[processor

NSD-Intel -- Chapt. 8 22 2004

Asymmetric Coarse-Grain Parallelism

e Multiple processors
e Each processor

— Optimized for specific task

— Includes generic instructions for control
e Assessment

— Same problems of coordination and data access as
symmetric case

— Designer must choose how many copies of each
processor type

NSD-Intel -- Chapt. 8 23 2004

Special-Purpose Coprocessors

e Specia-purpose hardware

e Added to conventional processor to speed computation

e |nvoked like software subroutine

e Typica implementation: ASIC chip

e Choose operations that yield greatest improvement in speed

NSD-Intel -- Chapt. 8 24 2004

General Principle

To optimize computation, move operations that account for the
most CPU time from software into hardware.

NSD-Intel -- Chapt. 8 25 2004

General Principle

To optimize computation, move operations that account for the
most CPU time from software into hardware.

e |dea known as Amdahl’s law (performance improvement
from faster hardware technology is limited to the fraction of
time the faster technology can be used)

NSD-Intel -- Chapt. 8 25 2004

NICs And Onboard Processing

e Basic optimizations
— Onboard address recognition and filtering
— Onboard buffering
— DMA
— Buffer and operation chaining

e Further optimization possible

NSD-Intel -- Chapt. 8 26 2004

Smart NICs With Onboard Stacks

e Add hardwareto NIC
— Off-the-shelf chips for layer 2
— ASICsfor layer 3

e Allows each NIC to operate independently
— Effectively a multiprocessor

— Total processing power increased dramatically

NSD-Intel -- Chapt. 8 27 2004

| llustration Of Smart NICs
With Onboard Processing

Smart NIC,

|

Sandard CPU

|

most layer 2 processing
some layer 3 processing

all other
processing

Smart NIC,

|

most layer 2 processing
some layer 3 processing

e NIC handles layers 2 and 3

e CPU only handles exceptions

NSD-Intel -- Chapt. 8

28

2004

Cell Switching

e Alternative to new hardware
e Changes

— Basic paradigm

— All details (e.g., protocols)

e Connection-oriented

NSD-Intel -- Chapt. 8 29 2004

Cdl Switching Detalls

e Fixed-size packets
— Allows fixed-size buffers
— Guaranteed time to transmit/receive

e Relative (connection-oriented) addressing
— Smaller address size
— Label on packet changes at each switch
— Requires connection setup

e Example: ATM

NSD-Intel -- Chapt. 8 30 2004

Data Pipeline

e Move each packet through series of processors

e Each processor handles some tasks

e Assessment

— Weall-suited to many protocol processing tasks

— Individual processor can be fast

NSD-Intel -- Chapt. 8 31 2004

|llustration Of Data Pipeline

packets enter interstage packet buffer packets |eave
the pipeline stage 4 the pipeline
l stage 1 stage 3 stage 5 l
stage 2

1 1 e 1 N S o e N o S

e Pipeline can contain heterogeneous processors

e Packets pass through each stage

NSD-Intel -- Chapt. 8 32

2004

Summary

e Packet rate can be more important than data rate

e Highest packet rate achieved with smallest packets

e Rates measured per interface or aggregate

e Specia hardware needed for highest-speed network systems
— Smart NIC can include part of protocol stack

— Parallel and pipelined hardware also possible

NSD-Intel -- Chapt. 8 33 2004

Questions?

| X

Classification
And
Forwarding

NSD-Intel -- Chapt. 9 1 2004

Recall

e Packet demultiplexing
— Used with layered protocols
— Packet proceeds through one layer at a time

— On input, software in each layer chooses module at next
higher layer

— On output, type field in each header specifies
encapsulation

NSD-Intel -- Chapt. 9 2 2004

The Disadvantage Of Demultiplexing

Although it provides freedom to define and use arbitrary
protocols without Introducing transmission overhead,

demultiplexing Is Inefficient because It Imposes seguential
processing among layers.

NSD-Intel -- Chapt. 9 3 2004

Packet Classification

e Alternative to demultiplexing
e Designed for higher speed
e Considers al layers at the same time
e Linear in number of fields
e Two possible implementations
— Software

— Hardware

NSD-Intel -- Chapt. 9 4 2004

Example Classification

e (lassify Ethernet frames carrying traffic to Web server
e Specify exact header contents in rule set
e Example

— Ethernet type field specifies IP

— |P type field specifies TCP

— TCP destination port specifies Web server

NSD-Intel -- Chapt. 9 5 2004

Example Classification
(continued)

e Fed sizes and values
— 2-octet Ethernet type 1s 080044

— l-octet IP typeis 6
— 2-octet TCP destination port is 80

NSD-Intel -- Chapt. 9 6 2004

| llustration Of Encapsulated Headers

4 8

10

16 19 24

31

ETHERNET DEST. (0-1)

ETHERNET DESTINATION (2-5)

ETHERNET SOURCE (0-3)

ETHERNET SOURCE (4-5) ETHERNET TYPE
VERS HLEN SERVICE IP TOTAL LENGTH
IP IDENT FLAGS FRAG. OFFSET
IPTTL IP TYPE IP HDR. CHECKSUM

IP SOURCE ADDRESS

IP DESTINATION ADDRESS

TCP SOURCE PORT

TCP DESTINATION PORT

TCP SEQUENCE

TCP ACKNOWLEDGEMENT

HLEN

NOT USED

CODE BITS

TCP WINDOW

TCP CHECKSUM

TCP URGENT PTR

Start Of TCP Data...

e Highlighted fields are used for classification of Web server

traffic

NSD-Intel -- Chapt. 9

2004

Softwar e | mplementation
Of Classification

e Compare values in header fields
e Conceptually alogical and of all field comparisons

e Example
if ((frame type == 0x0800) && (IP type ==6) && (TCP port == 80))
declare the packet matches the classification;

else
declare the packet does not match the classification;

NSD-Intel -- Chapt. 9 8 2004

Optimizing Softwar e Classification

e Comparisons performed sequentially

e Can reorder comparisons to minimize effort

NSD-Intel -- Chapt. 9 9 2004

Example Of Optimizing
Softwar e Classification
e Assume
— 95.0% of al frames have frame type 080014
— 87.4% of all frames have IP type 6
— 74.3% of all frames have TCP port 80

e Also assume values 6 and 80 do not occur in corresponding
positions in non-1P packet headers

e Reordering tests can optimize processing time

NSD-Intel -- Chapt. 9 10 2004

Example Of Optimizing
Softwar e Classification
(continued)

if ((TCP port == 80) && (IP type == 6) && (frame type == 0x0800))
declare the packet matches the classification;
else

declare the packet does not match the classification;

e At each step, test the field that will eliminate the most
packets

NSD-Intel -- Chapt. 9 11

2004

Note About Optimization

Although the maximum number of comparisons in a software
classifier is fixed, the average number of comparisons is
determined by the order of the tests; minimum comparisons

result if, at each step, the classifier tests the field that
eliminates the most packets.

NSD-Intel -- Chapt. 9 12 2004

Hardware | mplementation Of Classification

e Can build special-purpose hardware
e Steps

— Extract needed fields

— Concatenate bits

— Place result in register

— Perform comparison

e Hardware can operate in parallel

NSD-Intel -- Chapt. 9 13 2004

| llustration Of Hardwar e Classifier

Memory

—<— packet in memory —>

wide data path to move
packet headers from memory ——»
to a hardware register

hardware register

specific header bytes constant to compare
extracted for comparison — /

comparator

result of comparison —>1

e Constant for Web classifier is 08.00.06.00.504¢

NSD-Intel -- Chapt. 9 14

2004

Special Cases Of Classification

e Multiple categories
e Variable-size headers

e Dynamic classification

NSD-Intel -- Chapt. 9 15 2004

|n Practice

e C(lassification usually involves multiple categories
e Packets grouped together into flows

e May have a default category

e Each category specified with rule set

NSD-Intel -- Chapt. 9 16 2004

Example Multi-Category Classification

e Fow 1. traffic destined for Web server
e FHow 2: traffic consisting of ICMP echo reguest packets
e How 3: al other traffic (default)

NSD-Intel -- Chapt. 9 17 2004

Rule Sets

e \Web server traffic

— 2-octet Ethernet type i1s 080044

— 1-octet IP typeis 6

— 2-octet TCP destination port is 80
e |CMP echo traffic

— 2-octet Ethernet type i1s 080044

— l-octet IP typeis 1

— 1-octet ICMP typeis 8

NSD-Intel -- Chapt. 9 18 2004

Softwar e | mplementation Of Multiple Rules

if (frame type != 0x0800) {
send frame to flow 3;
} else if (IPtype ==6 && TCP destination port == 80) {
send packet to flow 1;
} else if (IPtype ==1 && ICMP type ==8) {
send packet to flow 2;
} else {
send frame to flow 3;

e Further optimization possible

NSD-Intel -- Chapt. 9 19 2004

Variable-Size Packet Headers

e Fidds not at fixed offsets
e FEasly handled with software

e Finite cases can be specified in rules

NSD-Intel -- Chapt. 9 20 2004

Example Variable-Size Header: |P Options

e RuleSetl
— 2-octet frame type field contains 080044
— 1-octet field at the start of the datagram contains 454
— 1-octet type field in the |P datagram contains 6

— 2-octet field 22 octets from start of the datagram
contains 80

e Rule Set 2
— 2-octet frame type field contains 080044
— 1-octet field at the start of the datagram contains 46,4
— l-octet type field in the |P datagram contains 6

— 2-octet field 26 octets from the start of datagram
contains 80

NSD-Intel -- Chapt. 9 21 2004

Effect Of Protocol Design On Classification

e Fixed headers fastest to classify
e Each variable-size header adds one computation step
e |nworst case, classification no faster than demultiplexing

e Extreme example: IPv6

NSD-Intel -- Chapt. 9 22 2004

Hybrid Classification

packets classified into o
flows by hardware packets classified into
flows by software

.

hardware software
T . classifier . classifier . T .
packets arrive packets unrecognized exit for
for classification by hardware unclassified packets

e Combines hardware and software mechanisms
— Hardware used for standard cases
— Software used for exceptions

e Note: software classifier can operate at slower rate

NSD-Intel -- Chapt. 9 23 2004

Two Basic Types Of Classification

o Static
— Flows specified in rule sets
— Header fields and values known a priori
e Dynamic
— Flows created by observing packet stream
— Values taken from headers
— Allows fine-grain flows

— Requires state information

NSD-Intel -- Chapt. 9 24 2004

Example Static Classification

e Allocate one flow per service type

e One header field used to identify flow
— IP TYPE OF SERVICE (TOS)

e Use DIFFSERYV interpretation

e Note: Ethernet type field also checked

NSD-Intel -- Chapt. 9 25 2004

Example Dynamic Classification

e Allocate flow per TCP connection
e Header fields used to identify flow
— IP source address
— |P destination address
— TCP source port number
— TCP destination port number
e Note: Ethernet type and IP type fields also checked

NSD-Intel -- Chapt. 9 26 2004

| mplementation Of Dynamic Classification

e Usualy performed in software
e State kept in memory
e State information created/updated at wire speed

NSD-Intel -- Chapt. 9 27 2004

Two Conceptual Bindings

classification: packet - flow

forwarding: flow — packet disposition

e (lassfication binding is usually 1-to-1

e [Forwarding binding can be 1-to-1 or many-to-1

NSD-Intel -- Chapt. 9 28

2004

Flow | dentification

e Connection-oriented network
— Per-flow SVC can be created on demand
— Fow ID eguals connection 1D
e Connectionless network
— Flow ID used internally
— Each flow ID mapped to (next hop, interface)

NSD-Intel -- Chapt. 9 29 2004

Relationship Of Classification And Forwarding
In A Connection-Oriented Networ k

In a connection-oriented network, flow identifiers assigned by
classification can be chosen to match connection identifiers
used by the underlying network. Doing so makes forwarding
more efficient by eliminating one binding.

NSD-Intel -- Chapt. 9 30 2004

Forwarding In A Connectionless Network

e Route for flow determined when flow created
e |ndexing used in place of route lookup

e Fow identifier corresponds to index of entry in forwarding
cache

e Forwarding cache must be changed when route changes

NSD-Intel -- Chapt. 9 31 2004

Second Generation Network Systems

e Designed for greater scale

e Use classification instead of demultiplexing

e Decentralized architecture
— Additional computational power on each NIC
— NIC implements classification and forwarding

e High-speed internal interconnection mechanism
— Interconnects NICs

— Provides fast data path

NSD-Intel -- Chapt. 9 32 2004

| llustration Of Second Gener ation
Network Systems Architecture

Interface, Sandard CPU Interface,
Control
s A N And 4 A N
Exceptions

Layer 1 & 2 Class- Forward- Forward- Class- Layer 1 & 2

(framing) ification ing ification (framing)

fast data path ing

NSD-Intel -- Chapt. 9 33 2004

Classification And Forwarding Chips

e Sold by vendors
e |[mplement hardware classification and forwarding

e Typica configuration: rule sets given in ROM

NSD-Intel -- Chapt. 9 34 2004

Summary

e (lassfication faster than demultiplexing
e Can be implemented in hardware or software
e Dynamic classification

— Uses packet contents to assign flows

— Requires state information

NSD-Intel -- Chapt. 9 35 2004

Questions?

X1

Network Processors. Motivation And Purpose

NSD-Intel -- Chapt. 11 1 2004

Second Generation Network Systems

e Concurrent with ATM development (early 1990s)
e Purpose: scale to speeds faster than single CPU capacity
e Features

— Use classification instead of demultiplexing

— Decentralized architecture to offload CPU

— Design optimized for fast data path

NSD-Intel -- Chapt. 11 2

2004

Second Generation Network Systems
(details)

e Multiple network interfaces
— Powerful NIC
— Private buffer memory
e High-speed hardware interconnects NICs
e General-purpose processor only handles exceptions

e Sufficient for medium speed interfaces (100 Mbps)

NSD-Intel -- Chapt. 11 3 2004

Reminder: Protocol Processing In
Second Generation Network Systems

Interface, Sandard CPU Interface,
Control
- A N And - A N
Layer 1 & 2| Class- | Forward- STl Forward- | Class- |Layer1& 2
(framing) | ification ing fast data path ing ification | (framing)

e NIC handles most of layers 1-3
e [ast-path forwarding avoids CPU completely

NSD-Intel -- Chapt. 11 4 2004

Third Generation Network Systems

o |ate 1990s

e Functionality partitioned further

e Additional hardware on each NIC

e Almost all packet processing off-loaded from CPU

NSD-Intel -- Chapt. 11 5 2004

Third Generation Design

e NIC contains

— ASIC hardware

— Embedded processor plus code in ROM
e NIC handles

— Classification

— Forwarding

— Traffic policing

— Monitoring and statistics

NSD-Intel -- Chapt. 11 6 2004

Embedded Processor

e Two possihilities
— Complex Instruction Set Computer (CISC)
— Reduced Instruction Set Computer (RI1SC)
e RISC used often because
— Higher clock rates
— Smaller

— Lower power consumption

NSD-Intel -- Chapt. 11 7 2004

Purpose Of Embedded Processor
In Third Generation Systems

Third generation systems use an embedded processor to handle
layer 4 functionality and exception packets that cannot be
forwarded across the fast path. An embedded processor
architecture Is chosen because ease of Implementation and
amenability to change are more important than speed.

NSD-Intel -- Chapt. 11 8 2004

Protocol Processing In Third Generation Systems

Interlfacel standard CPU InterlfaceZ
A l A
r N -)
Layer 4 Other processing Layer 4
Embedded : Embedded
processor Traffic Mgmt. (ASIC) | prgcessor
Layers 1 & 2 Layers 1 & 2
Layer 3 & class. switching fabric Layer 3 & class.
ASIC ASIC

e Specia-purpose ASICs handle lower layer functions
e Embedded (RISC) processor handles layer 4
e CPU only handles low-demand processing

NSD-Intel -- Chapt. 11 9 2004

Are Third Generation Systems Sufficient?

NSD-Intel -- Chapt. 11 10 2004

Are Third Generation Systems Sufficient?

e Almost

NSD-Intel -- Chapt. 11 10 2004

Are Third Generation Systems Sufficient?

e Almost ... but not quite.

NSD-Intel -- Chapt. 11 10 2004

Problems With Third Generation Systems

e High cost

e | ong time to market

e Difficult to ssimulate/test

e EXxpensive and time-consuming to change
— Even trivial changes require silicon respin
— 18-20 month development cycle

e Little reuse across products

e Limited reuse across versions

NSD-Intel -- Chapt. 11 11 2004

Problems With Third Generation Systems
(continued)

e No consensus on overall framework
e No standards for special-purpose support chips

e Requires in-house expertise (ASIC designers)

NSD-Intel -- Chapt. 11 12 2004

A Fourth Generation

e (oal: combine best features of first generation and third
generation systems

— FHexibility of programmable processor
— High speed of ASICs

e Technology called network processors

NSD-Intel -- Chapt. 11 13 2004

Definition Of A Networ k Processor

A network processor IS a special-purpose, programmable
hardware device that combines the low cost and flexibility of a
RISC processor with the speed and scalability of custom silicon
(i.e., ASC chips). Network processors are building blocks used
to construct network systems.

NSD-Intel -- Chapt. 11 14 2004

Network Processors. Potential Advantages

e Relatively low cost
e Straightforward hardware interface
e Facilities to access
— Memory
— Network interface devices
e Programmable
e Ability to scale to higher
— Datarates
— Packet rates

NSD-Intel -- Chapt. 11 15 2004

Network Processors. Potential Advantages

e Relatively low cost
e Straightforward hardware interface
e Facilities to access
— Memory
— Network interface devices
e Programmable
e Ability to scale to higher
— Datarates
— Packet rates

NSD-Intel -- Chapt. 11 15 2004

The Promise Of Programmability

e [or producers
— Lower initia development costs
— Reuse software in later releases and related systems
— Faster time-to-market
— Same high speed as ASICs
e For consumers
— Much lower product cost

— Inexpensive (firmware) upgrades

NSD-Intel -- Chapt. 11 16 2004

Choice Of Instruction Set

e Programmability alone insufficient
e Also need higher speed
e Should network processors have
— Instructions for specific protocols?
— Instructions for specific protocol processing tasks?

e Choices difficult

NSD-Intel -- Chapt. 11 17 2004

| nstruction Set

e Need to choose one instruction set
e No single instruction set best for all uses
e Other factors

— Power consumption

— Heat dissipation

— Cost

e More discussion later in the course

NSD-Intel -- Chapt. 11 18

2004

Scalability

e Two primary techniques
— Pardléism
— Data pipelining
e (Questions
— How many processors?
— How should they be interconnected?

e More discussion later

NSD-Intel -- Chapt. 11 19 2004

Costs And Benefits Of Networ k Processors

e Currently

— More expensive than conventional processor
— Slower than ASIC design
e \Where do network processors fit?

— Somewhere in the middle

NSD-Intel -- Chapt. 11 20 2004

Where Networ k Processors Fit

[|
ASIC
Designs
_ ? Network
Increasing Processor
Performance Designs

Software
On Conventional
Processor

Increasing cost

e Network processors: the middle ground

NSD-Intel -- Chapt. 11 21 2004

Achieving Higher Speed

e What is known
— Must partition packet processing into separate functions

— To achieve highest speed, must handle each function
with separate hardware

e What is unknown
— Exactly what functions to choose
— Exactly what hardware building blocks to use
— Exactly how building blocks should be interconnected

NSD-Intel -- Chapt. 11 22 2004

Variety Of Network Processors

e Economics driving a gold rush

— NPswill dramatically lower production costs for
network systems

— A good NP design potentially worth lots of $$

e Result
— Wide variety of architectural experiments

— Wild rush to try yet another variation

NSD-Intel -- Chapt. 11 23 2004

An Interesting Observation

e System developed using ASICs
— High development cost ($1M)
— Lower cost to replicate
e System developed using network processors
— Lower development cost
— Higher cost to replicate

e Conclusion: amortized cost favors ASICs for most high-
volume systems

NSD-Intel -- Chapt. 11 24 2004

Summary

e Third generation network systems have embedded processor
on each NIC

e Network processor is programmable chip with facilities to
process packets faster than conventional processor

e Primary motivation is economic
— Lower development cost than ASICs

— Higher processing rates than conventional processor

NSD-Intel -- Chapt. 11 25 2004

Questions?

X1

The Complexity Of
Network Processor Design

NSD-Intel -- Chapt. 12 1 2004

How Should A Network Processor
Be Designed?

e Depends on
— Operations network processor will perform

— Role of network processor in overall system

NSD-Intel -- Chapt. 12 2 2004

Goals

e Generality
— Sufficient for all protocols
— Sufficient for all protocol processing tasks
— Sufficient for all possible networks
e High speed
— Scale to high bit rates
— Scale to high packet rates
e Elegance

— Minimality, not merely comprehensiveness

NSD-Intel -- Chapt. 12 3 2004

The Key Point

A network processor Is not designed to process a specific
protocol or part of a protocol. Instead, designers seek a
minimal set of instructions that are sufficient to handle an
arbitrary protocol processing task at high speed.

NSD-Intel -- Chapt. 12 4 2004

Network Processor Design

e To understand network processors, consider problem to be
solved

— Protocols being implemented

— Packet processing tasks

NSD-Intel -- Chapt. 12 5 2004

Packet Processing Functions

e Error detection and correction

e Traffic measurement and policing

e Frame and protocol demultiplexing

e Address lookup and packet forwarding

e Segmentation, fragmentation, and reassembly
e Packet classification

e Traffic shaping

e Timing and scheduling

e (Queueing

e Security: authentication and privacy

NSD-Intel -- Chapt. 12 6 2004

Questions

e Doesour list of functions encompass all protocol
processing?

e Which function(s) are most important to optimize?

e How do the functions map onto hardware units in a typical
network system?

e Which hardware units in a network system can be replaced
with network processors?

e What minimal set of instructions is sufficiently general to
Implement all functions?

NSD-Intel -- Chapt. 12 7 2004

Divison Of Functionality

e Partition problem to reduce complexity

e Basic division into two parts

e Functions applied when packet arrives known as
INQgress processing

e Functions applied when packet |eaves known as

egress processing

NSD-Intel -- Chapt. 12 8 2004

| ngr ess Processing

e Security and error detection

e (Classification or demultiplexing

e Traffic measurement and policing

e Address lookup and packet forwarding

e Header modification and transport splicing
e Reassembly or flow termination

e [Forwarding, queueing, and scheduling

NSD-Intel -- Chapt. 12 9 2004

Egress Processing

e Addition of error detection codes

e Address lookup and packet forwarding
e Segmentation or fragmentation

e Traffic shaping

e Timing and scheduling

e (Queueing and buffering

e QOutput security processing

NSD-Intel -- Chapt. 12 10

2004

packets
arrive

packets
leave

—r>0—W0nW<IT

moO>»mnaom-d2Z2 —

| llustration Of Packet Flow

Ingress Processing

e Error and security checking

¢ Classification or demultiplexing

e Traffic measurement and policing

e Address lookup and packet forwarding

e Header modification and transport splicing
e Reassembly or flow termination

e Forwarding, queueing, and scheduling

Egress Processing

e Addition of error detection codes

e Address lookup and packet forwarding
e Segmentation or fragmentation

e Traffic shaping

e Timing and scheduling

e Queueing and buffering

e Output security Processing

NSD-Intel -- Chapt. 12

11

O — 20>

A Note About Scalability

Unlike a conventional processor, scalability is essential for
network processors. To achieve maximum scalability, a
network processor offers a variety of special-purpose functional
units, allows parallel or pipelined execution, and operates in a
distributed environment.

NSD-Intel -- Chapt. 12 12 2004

How Will Network Processors
Be Used?

e [or ingress processing only?
e [or egress processing only?

e [or combination?

NSD-Intel -- Chapt. 12 13 2004

How Will Network Processors
Be Used?

e [or ingress processing only?
e [or egress processing only?
e [or combination?

e Answer: No single role

NSD-Intel -- Chapt. 12 13 2004

Potential Architectural Roles
For Network Processor

e Replacement for a conventional CPU

e Augmentation of a conventional CPU

e On theinput path of a network interface card

e Between a network interface card and central interconnect
e Between central interconnect and an output interface

e On the output path of a network interface card

e Attached to central interconnect like other ports

NSD-Intel -- Chapt. 12 14 2004

An Interesting Potential
Role For Network Processors

In addition to replacing elements of a traditional third
generation architecture, network processors can be attached
directly to a central interconnect and used to implement stages
of a macroscopic data pipeline. The interconnect allows
forwarding among stages to be optimized.

NSD-Intel -- Chapt. 12 15 2004

Conventional Processor Design

e Design an instruction set, S
e Build an emulator/simulator for Sin software
e Build acompiler that trandates into S
e Compile and emulate example programs
e Compare results to
— Extant processors

— Alternative designs

NSD-Intel -- Chapt. 12 16 2004

Networ k Processor Emulation

e (Can emulate low-level logic (e.g., Verilog)
e Software implementation

— Slow

— Cannot handle real packet traffic
e FPGA implementation

— Expensive and time-consuming

— Difficult to make mgor changes

NSD-Intel -- Chapt. 12 17 2004

Network Processor Design

e Unlike conventional processor design
e No existing code base
e No prior hardware experience

e Each design differs

NSD-Intel -- Chapt. 12 18 2004

Hardware And Software Design

Because a network processor includes many low-level hardware
details that require specialized software, the hardware and
software designs are codependent; software for a network
processor must be created along with the hardware.

NSD-Intel -- Chapt. 12 19 2004

Summary
. Protoc_ol processing divided into ingress and egress
operations
e Network processor design is challenging because
— Desire generality and efficiency
— No existing code base

— Software designs evolving with hardware

NSD-Intel -- Chapt. 12 20 2004

Questions?

XIT1

Networ k Processor Architectures

NSD-Intel -- Chapt. 13 1 2004

Architectural Explosion

An excess of exuberance and a lack of experience have
produced a wide variety of approaches and architectures.

NSD-Intel -- Chapt. 13 2 2004

Principle Components

e Processor hierarchy

e Memory hierarchy

e |nternal transfer mechanisms

e External interface and communication mechanisms
e Special-purpose hardware

e Polling and notification mechanisms

e Concurrent and parallel execution support

e Programming model and paradigm

e Hardware and software dispatch mechanisms

NSD-Intel -- Chapt. 13 3 2004

Processing Hierarchy

e Consists of hardware units
e Performs various aspects of packet processing
e |ncludes onboard and external processors
e |ndividual processor can be
— Programmable
— Configurable
— Fixed

NSD-Intel -- Chapt. 13 4 2004

Typical Processor Hierarchy

Level Processor Type Programmable? On Chip?
8 General purpose CPU yes possibly
7 Embedded processor yes typically
5 I/O processor yes typically
6 Coprocessor no typically
4 Fabric interface no typically
3 Data transfer unit no typically
2 Framer no possibly
1 Physical transmitter no possibly

NSD-Intel -- Chapt. 13 5 2004

Memory Hierarchy

e Memory measurements
— Random access |latency
— Sequential access latency
— Throughput
— Cost

e Can be
— Internal

— External

NSD-Intel -- Chapt. 13 6 2004

Typical Memory Hierarchy

Memory Type Rel. Speed Approx. Size On Chip?
Control store 100 103 yes
G.P. Registerst 90 102 yes
Onboard Cache 40 103 yes
Onboard RAM 7 103 yes
Static RAM 2 107 no
Dynamic RAM 1 108 no

NSD-Intel -- Chapt. 13

2004

|nternal Transfer M echanisms

e |nterna bus
e Hardware FIFOs
e Transfer registers

e Onboard shared memory

NSD-Intel -- Chapt. 13 8 2004

External Interface And
Communication M echanisms

e Standard and specialized bus interfaces
e Memory interfaces
e Direct I/O interfaces

e Switching fabric interface

NSD-Intel -- Chapt. 13 9 2004

Example Interfaces

e System Packet Interface Level 3 or 4 (SPI-3 or SPI-4)
e SerDes Framer Interface (SFI)
e (CSIX fabric interface

Note: The Optical Internetworking Forum (OIF) controls the SPI and SFI
standards.

NSD-Intel -- Chapt. 13 10 2004

Polling And Notification M echanisms

e Handle asynchronous events

— Arriva of packet

— Timer expiration

— Completion of transfer across the fabric
e Two paradigms

— Polling

— Notification

NSD-Intel -- Chapt. 13 11 2004

Concurrent Execution Support

e |mproves overall throughput
e Multiple threads of execution

e Processor switches context when athread blocks

NSD-Intel -- Chapt. 13 12 2004

Support For Concurrent Execution

e Embedded processor
— Standard operating system
— Context switching in software
e |/O processors
— No operating system
— Hardware support for context switching

— Low-overhead or zero-overhead

NSD-Intel -- Chapt. 13 13 2004

Concurrent Support Questions

e Loca or global threads (does thread execution span
multiple processors)?

e Forced or voluntary context switching (are threads
preemptable)?

NSD-Intel -- Chapt. 13 14 2004

Hardware And Software Dispatch M echanisms

e Refersto overall control of parallel operations
e Dispatcher
— Chooses operation to perform

— Assigns to a processor

NSD-Intel -- Chapt. 13 15 2004

Implicit And Explicit Parallelism

e EXxplicit parallelism

— Exposes parallelism to programmer

— Requires software to understand parallel hardware
e |mplicit parallelism

— Hides parallel copies of functional units

— Software written as if single copy executing

NSD-Intel -- Chapt. 13 16 2004

Architecture Styles, Packet Flow,
And Clock Rates

e Embedded processor plus fixed coprocessors

e Embedded processor plus programmable I /O processors
e Parallel (number of processors scales to handle |oad)

e Pipeline processors

e Dataflow

NSD-Intel -- Chapt. 13 17 2004

Embedded Processor Architecture

—)

f(0; 90; h(

e Single processor

— Handles all functions

— Passes packet on

e Known as run-to-completion

NSD-Intel -- Chapt. 13

18

—)

2004

Parallel Architecture

coordination

—)

mechani Sf/\

é}ﬁ

N

f0;90; h0

f(; 90; h()

f0;90; h0

AN

@O

7

e Each processor handles 1/N of total load

NSD-Intel -- Chapt. 13

19

2004

—)

Pipeline Architecture

0

—)

90

—)

e Each processor handles one function

e Packet moves through *‘pipeline”’

NSD-Intel -- Chapt. 13

20

h()

2004

Clock Rates

e Embedded processor runs at > wire speed
e Parallel processor runs at < wire speed

e Pipeline processor runs at wire speed

NSD-Intel -- Chapt. 13 21 2004

Softwar e Architecture

e Centra program that invokes coprocessors like subroutines

e Central program that interacts with code on intelligent,
programmable | /O processors

e Communicating threads

e Event-driven program

e RPC-style (program partitioned among processors)
e Pipeline (even if hardware does not use pipeline)

e Combinations of the above

NSD-Intel -- Chapt. 13 22 2004

Example Uses Of Programmable Processors

General purpose CPU
Highest level functionality
Administrative interface
System control
Overall management functions
Routing protocols

Embedded processor
Intermediate functionality
Higher-layer protocols
Control of I/O processors
Exception and error handling
High-level ingress (e.g., reassembly)
High-level egress (e.g., traffic shaping)

I/O processor
Basic packet processing
Classification
Forwarding
Low-level ingress operations
Low-level egress operations

NSD-Intel -- Chapt. 13 23 2004

Using The Processor Hierarchy

To maximize performance, packet processing tasks should be
assigned to the lowest level processor capable of performing
the task.

NSD-Intel -- Chapt. 13 24 2004

Packet Flow Through The Hierarchy

Standard CPU (external)

almost no
* data -

Embedded (RISC) Processor

small amount
* of data "

I/O Processor

data to/from
*— programmable processors”

Lower Levels Of Processor Hierarchy
data data
arrives — = leaves

NSD-Intel -- Chapt. 13 25 2004

Summary

e Network processor architectures characterized by
— Processor hierarchy
— Memory hierarchy
— Internal buses
— External interfaces
— Special-purpose functional units
— Support for concurrent or parallel execution
— Programming model

— Digpatch mechanisms

NSD-Intel -- Chapt. 13 26 2004

Questions?

XVII

Overview Of The Intel Network Processor

NSD-Intel -- Chapt. 17 1 2004

An Example Network Processor

e We will
— Choose one example
— Examine the hardware
— Gain first-hand experience with software

e The choice Intel

NSD-Intel -- Chapt. 17 2 2004

Intel Network Processor Terminology

e Intel Exchange Architecture (1XA)
— Broad reference to architecture
— Both hardware and software
— Control plane and data plane

e |ntel Exchange Processor (I1XP)

— Network processor that implements I XA

NSD-Intel -- Chapt. 17 3 2004

| ntel | XP2xxx

e Refersto second generation IXP chip

e Severa models avallable

Model Intended Typical Data Support For
Number Use Input Rate cryptography
IXP2400 Access & edge 0OC-12to OC-48 2.5 Gbps no
IXP2800 Edge & core OC-48to OC-192 10.0 Gbps no
IXP2850 Edge & core OC-48to OC-192 10.0 Gbps yes

e Differencesin speed, power consumption, parallelism,

Interfaces, packaging

e Term IXP2xxx refers to any model

NSD-Intel -- Chapt. 17

2004

| XP2XxXX Features

e One embedded RISC processor

e FEight to sixteen programmable packet processors

e Multiple, independent onboard buses

e Processor synchronization mechanisms

e Shared and non-shared onboard memory

e One low-speed serial line interface

e Multiple interfaces for external memories

e Multiple interfaces for external 1/0O buses

e Coprocessor for hash computation and cryptography

e (Other functiona units

NSD-Intel -- Chapt. 17 5 2004

| XP2xxx External Connections

optional host connection —>< PCI bus >
SRAM
buses
A serial
SRAM e line
coprocessor

IXP2xXxX

N
chip
FLASH ~—@—~
i@_

DRAM

Sowport
DRAM t
bus

l

slligszss < receive bus > <

transmit bus

b

I/0O buses
NSD-Intel -- Chapt. 17 6

2004

| XP2400 External Connection Speeds

Type Bus Width Clock Rate Data Rate
Serial line (NA) (NA) 38.4 Kbps
PCI bus 64 bits 66 MHz 2.2 Gbps
MSF interface 32 bits in and out unspecified unspecified
DDR DRAM 64 bits 150 MHz 2.4 GBps
QDR SRAM 32 bits 200 MHz 1.6 GBps

TGBps abbreviates Giga Bytes per second.

e Notes
— MBps abbreviates Mega Bytes per second
— | XP2800 operates at higher speed

NSD-Intel -- Chapt. 17 7 2004

| XP2xxx I nternal Units

Quantity Component Purpose
1 Embedded RISC Control, higher layer protocols,
processor and exceptions
8/16 Packet processing I/O, basic packet processing,
engines and packet forwarding
1+ SRAM access unit Coordinate access to the
external SRAM bus
L= DRAM access unit Coordinate access to the
external DRAM bus
1 Media/Switch Fabric Coordinate access to the
access unit external |/O devices
1 PCIl bus access unit Coordinate access to the
external PCI bus
1 Hash unit Compute a hash function for
high-speed lookup
Oor1l Crypto unit Compute cryptographic encoding
for secure transfer
several Onboard buses Internal control and data transfer

NSD-Intel -- Chapt. 17

2004

optional host connection —» <

| XP2xxx Internal Architecture

PCI bus

b

SRAM
buses IXP2xxx chip
N ' Embedded | |serial
SRAM le—a| |e - SRAM PCl access RISC line
processor [T
(Xscale)
COpProcessor je—= scratch - :
memory Microengine 1
v ~ multiple,
independent Microengine 2
internal
Slowport buses : -
FLASH e » Taccess Microengine 3
Jowport —
Microengine N
e |- | DrAM MSF g
access access
¥ ¥
DRAM
bus ‘ l
HII gsbpl)ﬁsg < receive bus > < transmit bus >
NSD-Intel -- Chapt. 17 9

2004

Processors On The | XP2xxx

Processor Type Onboard? Programmable?
General-Purpose Processor no yes
Embedded RISC Processor yes yes
/O Processors yes yes
Coprocessors yes no
Physical Interfaces no no

NSD-Intel -- Chapt. 17 10 2004

| XP2xxx Memory Hierarchy

Memory Maximum On Typical

Type Size Chip? Use
GP Registers 256 (2 banks) yes Intermediate computation
Inst. Cache 32 Kbytes yes Recently used instructions
Data Cache 32 Kbytes yes Recently used data
Mini Cache 2 Kbytes yes Data that is reused once
Write buffer unspecified yes Write operation buffer
Local memory 2560 bytes/pueng. yes Register spills and caching
Scratchpad 16 Kbytes yes IPC and synchronization
Inst. Store 4 Kbytes /peng. yes Microengine instructions
FlashROM unspecified no Bootstrap
SRAM 64 Mbytes no Tables or packet headers
DRAM 2 Ghytes no Packet storage

NSD-Intel -- Chapt. 17

2004

| XP2xxx M emory Characteristics

Memory Access Unit Relative Special
Type (bytes) Access Time Features
local 4 1 accessed using the
LM_ADDR registers
Scratch 4 10 synchronization via
atomic read-modify-write
support for IPC (rings)
push/pull reflector
mode
SRAM 4 14 follows QDR specification
atomic operations
support for queues and rings
bit manipulation
DRAM 8 20 connects to: Xscale,
microengines, and
PCIl bus master
NSD-Intel -- Chapt. 17 12

2004

Memory Access

e Each memory specifies minimum access unit
— Two-byte unit is word
— Four-byte unit is longword
— Eight-byte unit is quadword

e When program accesses item in memory, physical memory
system fetches entire access unit

NSD-Intel -- Chapt. 17 13 2004

The Point About Memory Acceess

The underlying memory is organized into data units of words or
longwords. To achieve optimal performance, programmers

must understand the memory organization and allocate items to
minimize access times.

NSD-Intel -- Chapt. 17 14 2004

Example Of Complexity: PCI Access Unit

PCIl bus access unit T‘_to PCI bus_.T
... |
. Core interface BCTHUS :
] host fcns.

:[initiator Initiator Initiator PCI target target target |:
gaddr. FIFO||read FIFO | |write FIFO|| config. read FIFO | [write FIFO| [addr. FIFO@

.......... i
. | Master AR PC| Slave Slave
. [Address ' ¢ CSRs Write Address |
Reg. | | Buffer Register |
DMA Direct | : | :
read/write buf. || Buffer | : | :
R ~ Slave
| | ¢ slave interface
5 . o Interface | S
. PMA DRAMPMA SRAM|| Direct | : oo
: | interface || interface ||interface| : :

DRAM Datal [SRAM Data| [Address :
interface interface | |nterfacq :

0 SO0 SO

?..Mas.t.e.r. interface | Com mand Bus Master
Command Bus Slave ‘ ‘ ‘ ‘
! o o
pull push cmd. cmd. pull push pull push
SRAM bus bus bus SRAM bus DRAM bus

NSD-Intel -- Chapt. 17 15

Summary

e We will use Intel IXP2xxx as example
o [XP2xxx offers
— Embedded processor plus parallel packet processors

— Connections to external memories and buses

NSD-Intel -- Chapt. 17 16 2004

Questions?

NSD-Intel -- Chapt. 20

XX

Reference System
And
Softwar e Development Kit
(ENP-2611, SDK)

2004

Reference System

e Provided by vendor
e Targeted at potential customers
e Usually includes
— Hardware testbed
— Development software
— Simulator or emulator
— Download and bootstrap software

— Reference implementations

NSD-Intel -- Chapt. 20 2 2004

| ntel Reference Hardware

e Single-board network processor testbed
e Plugsinto PCl bus on a PC

e Part number ENP-2611

e |nternal code name Mt. Hood

e Manufactured by Radisys Corporation

NSD-Intel -- Chapt. 20 3 2004

|ltems On The Intd
ENP-2611 Reference System

Quantity or Size ltem
1 IXP2400 network processor (600MHZz)
8 Mbytes of QDR-SRAM memory
256 Mbytes of DDR-SDRAM memory
16 Mbytes of Flash ROM memory
1 SPI-3 bridge FPGA to connect to:

— PM3386/7 Gigabit Ethernet MACs
— MSF running in SPI-3 mode
10/100/1000 optical Ethernet ports
10/100 Ethernet management port
Serial interface (on the XScale)
PCI bus interface

PR P W

NSD-Intel -- Chapt. 20 4 2004

| ntel Refer ence Softwar e

e Known as Software Development Kit (SDK)

e Runson PC

e Includes:
Software Purpose
C compiler Compile C programs for the XScale
MicroC compiler Compile C programs for the microengines
Assembler Assemble programs for the microengines
Simulator Simulate an IXP2xxx for debugging (Windows)

Resource Manager

Workbench Server
Workbench Backend Svr

Bootstrap
Reference Code

NSD-Intel -- Chapt. 20

XScale kernel module used to control
and communicate with hardware
Load software into the network processor
Remote (Windows) application that controls
and communicates with the network processor
Start the network processor running
Example programs for the IXP2xxx that show
how to implement basic functions

Operating System On XScale

e XScale processor powerful enough to run an OS
e Version of Embedded Linux used that supports
— Telnet server that allows remote login
— Shell that allows a user to run commands
— Access to aremote file system via NFS

— Other sarvers that are used for control and status

NSD-Intel -- Chapt. 20 6 2004

Operating System On External Host

e Cross-development tools run on external host (PC)

— Some SDK compilers require Linux

— Workbench Backend Server (WB Backend Server) used
for download runs under Windows

e Site can avoid using Workbench software

NSD-Intel -- Chapt. 20 7 2004

External File Access And Storage

e DRAM accessed via DRAM bus
e SRAM and Flash accessed via SRAM bus
e Ethernet ports accessed via MSF
e Code and data downloaded via control Ethernet
e NFS accessed via control Ethernet
e XScale accessed via
— Senal line (console)

— Telnet

NSD-Intel -- Chapt. 20 8 2004

Basic Paradigm

e Build software on conventional computer
e | oad into reference system

e Test/measure results

NSD-Intel -- Chapt. 20 9 2004

Bootstrapping Procedure

. Restarting the ENP-2611 causes the boot manager on the
XScale to load and run a copy of RedBoot program out of
the Flash ROM.

. The RedBoot program running on the XScale sends a
BOOTP reguest to obtain an |P address for the management
Ethernet port.

. The RedBoot program running on the XScale uses the |P
address obtained via BOOTP to contact a TFTP server and
download a copy of the Linux kernel image.

. The Linux kernal boots and uses NFS to mount a remote file
system.

. After the kernel Is operational, a script runs that starts a
telnet server on the management interface as well as other
servers that accessible to externa hosts.

NSD-Intel -- Chapt. 20 10 2004

Starting Software

. Compile code for the XScale and microengines, and place
the resulting files in a directory, D, on the computer that runs
the NFS server. The Intel SDK uses the terms core
component and microblock for the compiled files.

. Copy the entire contents of directory D to the read-write
public download directory, W, that has been mounted by the
testbed. (This step is not necessary If only one programmer
has access to the testbed.)

. Run atelnet client program on the host that forms a
connection to the testbed system, and log onto the X Scale.

. Load a set of Linux kernel modules, including microengine
drivers, the Resource Manager library, and a module to
configure the SPI-3 interface.

NSD-Intel -- Chapt. 20 11 2004

Starting Software
(continued)

5. Load a module that reads microblock code and places the
code into microengines. Note that no such module comes
with the SDK; a programmer must write the module.
However, the module does not need to access hardware
directly because the Resource Manager can be used to load
code into microengines.

6. Start the programs on the XScale that were compiled in Step
1.

NSD-Intel -- Chapt. 20 12 2004

Summary

e Reference systems
— Provided by vendor
— Targeted at potential customers
— Usually include
* Hardware testbed
* Cross-development software
* Download and bootstrap software

* Reference implementations

NSD-Intel -- Chapt. 20 13 2004

Questions?

XVITI

Embedded RISC Processor (XScale Core)

NSD-Intel -- Chapt. 18 1 2004

GPP

-

IXP2xxXx

XScale Role

General-Purpose
Processor

/

Embedded
RISC
Processors

i

GPP

\

IXP2xxX

physical
‘/ l \l - Physcal ’l

e (a) Single | XP2xxx

(@)

e (b) Multiple IXP2xxxs
e Role of XScale differs

NSD-Intel -- Chapt. 18

IXP2xxX

IXP2xxX

|

(b)

|

2004

Tasks That Can Be Performed
By XScale

e Bootstrapping

e EXxception handling

e Higher-layer protocol processing

e [nteractive debugging

e Diagnostics and logging

e Memory allocation

e Application programs (if needed)

e User interface and/or interface to the GPP
e Control of packet processors

e (Other administrative functions

NSD-Intel -- Chapt. 18 3 2004

XScale Characteristics

e Reduced Instruction Set Computer (RISC)

e Thirty-two bit arithmetic

e Extrafunctionality can be provided via a coprocessor
e Byte addressable memory

e Virtua memory support

e Built-in seria port

e Facilities for a kernelized operating system

e Performance monitoring unit

NSD-Intel -- Chapt. 18 4 2004

Arithmetic

e XScale is configurable in two modes
— Big endian
— Little endian

e (Choice made at run-time

NSD-Intel -- Chapt. 18 5 2004

Perfor mance Monitoring Unit

e (Can measure
— Instruction cache miss rate
— Trandation Lookaside Buffer (TLB) miss rate
— Stalls in the instruction pipeline

— Number of branches initiated by software

e Useful for program tuning

NSD-Intel -- Chapt. 18 6 2004

XScale Memory Organization

e Single, uniform address space
e |ncludes memories and devices

e Byte addressable

NSD-Intel -- Chapt. 18 7 2004

NSD-Intel -- Chapt. 18

XScale Address Space

Address
FFFF FFFF

EOO0O0 0000

C000 0000

8000 0000

0000 0000

Contents

PCl memory
(1/2 GByte)

CSRs and Other
(1/2 GByte)

SRAM
(1 GByte)

DRAM
and
Slowport/Flash
ROM
(2 GBytes)

2004

Shared Memory And Address Tranglation

e Memory shared with microengines

e Microengines use separate physical address spaces

NSD-Intel -- Chapt. 18 9 2004

Conseguence For Programmers

Because the Xscale and packet processors do not use the same
memory architecture, linked lists and other data structures in
which pointers cross from one memory to another do not make

sense in in the microengine address space.

NSD-Intel -- Chapt. 18 10 2004

Internal Peripheral Units

e One UART
e [Four 32-bit countdown timers (one watchdog)
e Eight General-Purpose I/0 (GPIO) pins

e One Slowport interface

NSD-Intel -- Chapt. 18 11 2004

Summary

e Embedded processor on I XP2xxx is XScale
e XScale addressing

— Single, uniform address space

— Includes all memories

— Byte addressable

NSD-Intel -- Chapt. 18 12 2004

Questions?

XIX

Packet Processor Hardware
(Microengines)

NSD-Intel -- Chapt. 19 1 2004

Microengines

e Parald hardware units
— Eight on 1 XP2400
— Sixteen on | XP28x0
e Handle fast data path processing

e Known as microengine version 2 MEV2)

NSD-Intel -- Chapt. 19 2 2004

Role Of Microengines

e Packet ingress from physical layer hardware
e Checksum verification

e Header processing and classification

e Packet buffering in memory

e Tablelookup and forwarding

e Header modification

e Checksum computation

e Packet egress to physical layer hardware

NSD-Intel -- Chapt. 19 3 2004

Microengine Char acteristics

e Programmable microcontroller

e RISC design

e Two hundred fifty-six general-purpose registers

e Five hundred twelve transfer registers

e One hundred twenty-eight Next Neighbor registers

e Hardware support for four threads and context switching
e SiX hundred forty words of local memory

e Sixteen entry CAM with thirty-two bits per entry

NSD-Intel -- Chapt. 19 4 2004

Microengine Char acteristics
(continued)

e Control of an Arithmetic Logic Unit (ALU)
e Direct access to various functional units

e A unit to compute a Cyclic Redundancy Check (CRC)

NSD-Intel -- Chapt. 19 5 2004

Microengine L evel

e Not atypica CPU
e Does not contain native instruction for each operation
e Controls other units on the chip

e Really a microsequencer

NSD-Intel -- Chapt. 19 6 2004

Consequence Of Microsequencing

Because it functions as a microsequencer, a microengine does
not provide native hardware instructions for arithmetic
operations, nor does it provide addressing modes for direct
memory access. Instead, a program running on a microengine
controls and uses functional units on the chip to access memory
and perform operations.

NSD-Intel -- Chapt. 19 7 2004

Microengine Instruction Set (Part 1)

Description

Instruction

General instructions (Arithmetic, Rotate, And Shift)

ALU

ALU_SHF

ASR

BYTE_ALIGN_BE, BYTE_ALIGN_LE
CRC_LE, CRC_BE

DBL_SHF

MUL_STEP

FFS

POP_COUNT

IMMED

IMMED_BO through IMMED_B3
IMMED_WO, IMMED_W1

LD FIELD, LD _FIELD W_CLR
LOAD_ADDR

LOCAL_CSR_RD, LOCAL_CSR_WR
NOP

Perform an ALU operation

Perform an ALU operation and shift
Perform an arithmetic right shift
Concatenate registers and select bytes
Compute CRC (big or little endian)
Concatenate and shift two longwords
Multiply two unsigned integers

Find position of LSB in register

Count 1 bits in a register

Load immediate 16-bit value to register
Load immediate byte to a field

Load immediate 16-bit word to a field
Load bytes to specified fields

Load instruction address

Read or write local microengine CSRs

No operation

NSD-Intel -- Chapt. 19

2004

Microengine Instruction Set (Part 2)

Description

Instruction

Branch and Jump Instructions

BCC

BR

BR_BCLR, BR_BSET
BR=BYTE, BR!=BYTE
BR=CTX, BR!=CTX

BR_SIGNAL, BR_ISIGNAL
JUMP
RTN

Branch on condition code

Branch unconditionally

Branch if bit clear or set

Branch if byte equal or not equal to litera

Branch on current context

BR_INP_STATE, BR_!INP_STATE Branch on event state

Branch if signal deasserted
Jump to label

Return from branch or jump

NSD-Intel -- Chapt. 19

2004

Microengine Instruction Set (Part 3)

Description Instruction
Content Addressable Memory (CAM) Instructions

CAM_CLEAR Clear all entries in local CAM
CAM_WRITE_STATE Write state bits into specified CAM entry
CAM_READ_TAG Read tag for specified CAM entry
CAM_READ_STATE Read state bits for specified CAM entry
CAM_LOOKUP Search local CAM for tag value
CAM_WRITE Write tag value for specified CAM entry

NSD-Intel -- Chapt. 19 10

2004

Microengine Instruction Set (Part 4)

Instruction

Description

/O And Context Swap Instructions

DRAM (read and write)
DRAM (RBUF and TBUF)
CAP (CSR addressing)

CAP (calculated addressing)
CAP (reflect)

CTX_ARB

HALT

HASH

MSF

PCI

SCRATCH (read and write)
SCRATCH (atomic operation)
SCRATCH (ring operation)
SRAM (read and write)
SRAM (atomic operation)
SRAM (CSR)

SRAM (read queue descriptor)
SRAM (write queue descriptor)
SRAM (enqueue)

SRAM (dequeue)

SRAM (ring operation)

SRAM (journal operation)

Perform an ALU operation

Perform an ALU operation and shift
Perform an arithmetic right shift
Concatenate registers and select bytes
Compute CRC (big or little endian)
Concatenate and shift two longwords
Multiply two unsigned integers

Find position of LSB in register

Count 1 bits in a register

Load immediate 16-bit value to register
Load immediate byte to a field

Load immediate 16-bit word to a field
Load bytes to specified fields

Load instruction address

Read or write local microengine CSRs
Load or store values in CSR registers
Access queue in SRAM

Change queue in SRAM

Enqueue item in SRAM queue
Dequeue item from SRAM queue
Manipulate a communication ring in SRAM
Perform atomic operation in SRAM

NSD-Intel -- Chapt. 19

11

2004

Microengine View Of Memory

e Separate address spaces

e Specific instruction to reference each memory type
— Instruction dram to access DRAM memory
— Instruction sram to access SRAM memory
— Instruction scratch to access Scratchpad memory

e Consequence: early binding of data to memory

NSD-Intel -- Chapt. 19 12 2004

Six-Stage I nstruction Pipeline

Stage Description
1 Fetch the next instruction (part 1)
2 Fetch the next instruction (part 2)
3 Decode the instruction and get register address(es)
4 Extract the operands from registers
5 Perform ALU, shift, or compare operations and set
the condition codes
6 Write the results to the destination register

NSD-Intel -- Chapt. 19 13 2004

Example Of Pipeline Execution

clock stage 1 stage 2 stage 3 stage 4 stage 5 stage 6
1 inst. 1
Time
2 inst. 2 inst. 1
3 inst. 3 inst. 2 inst. 1
4 inst. 4 inst. 3 inst. 2 inst. 1
5 inst. 5 inst. 4 inst. 3 inst. 2 inst. 1
6 inst. 6 inst. 5 inst. 4 inst. 3 inst. 2 inst. 1
' 7 inst. 7 inst. 6 inst. 5 inst. 4 inst. 3 inst. 2
8 inst. 8 inst. 7 inst. 6 inst. 5 inst. 4 inst. 3

e Once pipeline is started, one instruction completes per cycle

NSD-Intel -- Chapt. 19 14 2004

| nstruction Stall

e Occurs when operand not available
e Processor temporarily stops execution
e Reduces overall speed

e Should be avoided when possible

NSD-Intel -- Chapt. 19 15 2004

Example Instruction Stall

e (Congder two Instructions:

K: ALU operation to add the contents of R1 to R2
K+1: ALU operation to add the contents of R2 to R3

e Second Instruction cannot access R2 until value has been

written

o Stall occurs

NSD-Intel -- Chapt. 19 16 2004

Effect Of Instruction Stall

clock stage 1 stage 2 stage 3 stage 4 stage 5 stage 6
1 inst. K inst. K-1 inst. K-2 inst. K-3 inst. K-4 inst. K-5
Time
2 inst. K+1 inst. K inst. K-1 inst. K-2 inst. K-3 inst. K-4
3 inst. K+2 inst. K+1 inst. K inst. K-1 inst. K-2 inst. K-3
4 inst. K+3 inst. K+2 inst. K+1 inst. K inst. K-1 inst. K-2
5 inst. K+3 inst. K+2 inst. K+1 - inst. K inst. K-1
6 inst. K+3 inst. K+2 inst. K+1 - - inst. K
' 7 inst. K+4 inst. K+3 inst. K+2 inst. K+1 - .
8 inst. K+5 inst. K+4 inst. K+3 inst. K+2 inst. K+1 -

e Bubble develops in pipeline

e Bubble eventually reaches final stage

NSD-Intel -- Chapt. 19

17

A Note For Programmers

Understanding the execution pipeline s important for
programmers because dependencies among instructions can
cause the processor to stall, which lowers performance.

NSD-Intel -- Chapt. 19 18 2004

Sour ces Of Delay

e Accessto result of previous/earlier operation
e Conditional branch

e Memory access

NSD-Intel -- Chapt. 19 19 2004

Memory Access Delays

Type Of Approx. Access Time In Clock Cycles

Memory IXP2400 IXP28x0
Local Memory 1 1
Scratchpad 60 60
SRAM 150 90
DRAM 300 120

e Delay issurprisingly large

NSD-Intel -- Chapt. 19 20

2004

Threads Of Execution

e Technique used to speed processing

e Multiple threads of execution remain ready to run
e Program defines threads and informs processor

e Processor runs one thread at atime

e Processor automatically switches context to another thread
when current thread blocks

e Known as hardware threads

e Microengine has eight threads

NSD-Intel -- Chapt. 19 21 2004

| llustration Of Hardware Threads

time t; time t, time tg

A
l <«— context switch

thread 4

time

e White - ready but idle
e Blue - being executed by microengine

e Gray - blocked (e.g., during memory access)

NSD-Intel -- Chapt. 19 22

The Point Of Hardware Threads

Hardware threads increase overall throughput by allowing a
microengine to handle up to four packets concurrently; with
threads, computation can proceed without waiting for memory

aCCess.

NSD-Intel -- Chapt. 19 23 2004

Context Switching Time

e |Low-overhead context switch means one instruction delay as
hardware switches from one thread to another

e Zero-overhead context switch means no delay during context
switch

o | XP2xxx offers zero-overhead context switch

NSD-Intel -- Chapt. 19 24 2004

Microengine Instruction Store

e Private instruction store per microengine
e Advantage: no contention

e Disadvantage: smaller size (4000 instructions)

NSD-Intel -- Chapt. 19 25 2004

General-Purpose Registers

e two hundred fifty-six per microengine

e Thirty-two bits each

e Used for computation or intermediate values
e Divided into banks

o Context-relative or absolute addresses

NSD-Intel -- Chapt. 19 26 2004

Forms Of Addressing

e Absolute
— Entire set available
— Usesinteger from O to 255
e Context-relative
— One eghth of set available to each thread
— Usesinteger from O to 31

— Allows same code to run on multiple microengines

NSD-Intel -- Chapt. 19 27 2004

Register Banks

e Mechanism commonly used with RISC processor
e Registers divided into A bank and B bank

e Maximum performance achieved when each instruction
references a register from the A bank and a register from the
B bank

NSD-Intel -- Chapt. 19 28 2004

Summary Of General-Purpose Registers

General Purpose Register
Number Of Active Absolute Addresses S Transfer D Transfer
Active Context or Neighbor e
Contexts Number A Port B Port Index
0 0-15 0-15 0-15 0-15
1 16 - 31 16 - 31 16 - 31 16 - 31
2 32 -47 32 -47 32 -47 32 -47
8 £ 48 - 63 48 - 63 48 - 63 48 - 63
4 64 -79 64 -79 64 - 79 64 -79
5 80 - 95 80 - 95 80 -95 80 - 95
6 96 - 111 96 - 111 96 - 111 96 - 111
7 112 - 127 112 - 127 112 - 127 112 - 127
0 0-31 0-31 0-31 0-31
4 2 32 - 63 32 - 63 32 -63 32 - 63
4 64 - 95 64 - 95 64 - 95 64 - 95
6 96 - 127 96 - 127 96 - 127 96 - 127

e Note: half of the registers for each context are from A bank
and half from B bank

NSD-Intel -- Chapt. 19 29 2004

Transfer Registers

e Used to buffer external memory transfers
e Example: read a value from memory
— Copy value from memory into transfer register

— Move value from transfer register into general-purpose
register

e Five hundred twelve per microengine
e Divided into four types

— SRAM or DRAM

— Read or write

NSD-Intel -- Chapt. 19 30 2004

Next Neighbor Registers

e Provide high-speed, synchronized communication

e Allows data to pass between microengines

e Handle small values

e Typicaly used to pass buffer address, not entire packet
e Used to build software pipeline

NSD-Intel -- Chapt. 19 31 2004

Next Neighbor Register Hardware

Primitive Type Purpose
NN_Get Register Extract next item from next neighbor ring
NN_Put Register Insert item in a next neighbor ring
NN_FULL Signal Test whether a next neighbor ring is full
NN_EMPTY Signal Test whether a next neighbor ring is empty

e Hardware polls state bit

NSD-Intel -- Chapt. 19

32

2004

L ocal Memory

e Private (one per microengine)
e Small size (2560 bytes)
e Low latency (one instruction cycle after setup)
e Read or written under program control
e Accessed via special hardware registers
— Address placed in LM_ADDRO
— Vaue accessed viaLM_ADDRL1

NSD-Intel -- Chapt. 19 33 2004

Content Addressable Memory (CAM)

Used to speed searches

o Characteristics

NSD-Intel --

Sixteen entries

Thirty-two bit search key per entry
Four-bit status value per entry
Single instruction lookup

Hardware reports first entry that matches

Chapt. 19 34

2004

Organization Of CAM

tag for entry state bits

NSD-Intel -- Chapt. 19 35 2004

Hardwar e Bits Returned For CAM Operation

11 10 9 8 7 6 5 4 3

N\ - /*\ - J

state bits miss entry number

NSD-Intel -- Chapt. 19 36 2004

Local Control And Status Registers

e Used to interrogate or control the I XP2xxx
e All mapped into XScale address space

e Microengine can only access its own local CSRs

NSD-Intel -- Chapt. 19 37 2004

Example Local CSRs

Local CSR Purpose
USTORE_ADDRESS Load the microengine control store
USTORE_DATA_ LOWER Lower 20 bits of the instruction
USTORE_DATA_ UPPER Upper 12 bits of the instruction
USTORE_ERROR_STATUS Error status bits
ALU_OUT Debugging: allows XScale to read

GPRs and transfer registers
CTX ARB_CTL Context arbiter control
CTX_ENABLES Context arbiter control
CC_ENABLE Debugging: read condition codes
CSR_CTX_POINTER Used to modify context-specific CSRs
INDIRECT_CTX_STS To access context-specific PC
ACTIVE_CTX_STS Find context currently running
TIMESTAMP_HIGH Clock (high-order bits)
TIMESTAMP_LOW Clock (low-order bits)

PSEUDO_RANDOM_NUMBER Random value

e Note: nisdigit from O through 7 (hardware contains a
separate CSR for each of the eight contexts).

NSD-Intel -- Chapt. 19 38 2004

| nter processor Communication M echanisms

e (Context-to-XScale communication

e Context-to-Context communication (one or more
| XP2XXX’ S)

NSD-Intel -- Chapt. 19 39 2004

Context-T o-XScale Communication

e [nterrupts (SHaC unit)

e Shared memory

e Memory ring mechanism
— SRAM
— Scratchpad

NSD-Intel -- Chapt. 19 40 2004

Context-to-Context communication

e Signa event mechanism
e Memory ring mechanism
e Next neighbor registers

e Reflector bus mechanism

NSD-Intel -- Chapt. 19 41 2004

SHaC Unit

e Operates as coprocessor
e Controls
— Scratchpad memory
— Hash unit
— Communication mechanism used by microengines
— CSR bus interface
— Push/pull reflector

NSD-Intel -- Chapt. 19 42 2004

SHaC Architecture (smplified)

CSRs
(CAP)

Hash
Unit

XScale
periph.

Scratch

and CAP
Control
Logic

cmd in
pull
Pull arbit.
Gen. =
push

arbit.

Scratchpad
RAM
(4K x 32)

pull

data Pullo
FIFO

pull

data Pull1
FIFO

push

data (

pull

data Pullo
FIFO

pull

data Pull1
FIFO

NSD-Intel -- Chapt. 19

ScratchPad Memory

e Organized into 4K words of 4 bytes each
e Offers special facilities
— Atomic operations
* Set or clear bits
* Increment, decrement, add, or subtract
* Swap values

— Communication rings

NSD-Intel -- Chapt. 19 a4 2004

Hash Unit

e Configurable coprocessor
e Operates asynchronously
e [ntended for fast table lookup

NSD-Intel -- Chapt. 19 45 2004

Hash Unit Computation
e Computes guotient Q(X) and remainder R(x):
AX) OM(Xx) / G(x) - Q(X) + R(x)

e A(X)isinput value
e M(X) Is hash multiplier (configurable)
e ((x) is built-in value

e Threevaluesfor G (48-bit, 64-bit, or 128-bit hash)

NSD-Intel -- Chapt. 19 46 2004

Hash M athematics

e |nteger value interpreted as polynomial over field [0,1]
e Example:
2040144

e |[sinterpreted as
w17 + 310 4 q
e Similarly, value G(x) used in 48-bit hash
1001002000401 ¢

e |[sinterpreted as

NSD-Intel -- Chapt. 19 47 2004

Hash Example

A = 8000000000015 (x4’ + 1)
G = 1001002000401, (x* + x30 + x2° + x10 + 1)
M = 20D 14 (x9 + X3 + x2 + 1)

e Hash computes R, remainder of M times A divided by G

HX) =R =A 0OM % G

NSD-Intel -- Chapt. 19 48 2004

Hash Example
(continued)

e \We seethat

AG)OMX) = x20 + x0 + x + xH + x93 + x3 +
X2 + 1

e [Furthermore:

ACOM = QOG + R

NSD-Intel -- Chapt. 19 49 2004

Hash Example
(continued)

e Where
Qx) = x® + x% + xi

e Thus, Qis106,and R is

e The hash unit returns R as the value of the computation:

H(A) = R = 90620C041B0B ¢

NSD-Intel -- Chapt. 19 50 2004

Other | XP2xxx Hardware

e The IXP2xxx contains registers used for
— Configuration and bootstrapping
— Control of functional units and buses

— Checking status of processors, threads, and onboard
functional units

NSD-Intel -- Chapt. 19 51 2004

The Point About Registers

In addition to basic functional units, the | XP contains hundreds
of registers that allow software to configure, control, or
Interrogate the status of functional units, buses, and attached

devices.

NSD-Intel -- Chapt. 19 92 2004

Media Switch Fabric I nterface

e Complex unit
* Primary interface to high-speed external devices

e Configurable to handle standard MACs such as

— UTOPIAO (1XP2400 only)
— SPI-3 (1XP2400 only)
— SPI1-4.2 (IXP28x0 only)

NSD-Intel -- Chapt. 19 93 2004

Transmit And Recelve BUFs

e Usedforl/O
e Contained in MSF unit
e Function as randomly accessible memory
e Transfer in chuncks of 64, 128, or 256 bytes
e Two types
— Recelve BUFs (RBUFs) handle input
— Transmit BUFs (TBUFs) handle output

NSD-Intel -- Chapt. 19 54 2004

Crypto Unit

e Avallable on the I XP2850
e TwoO units
e (Can be used for

— Two 3DES/DES (Data Encryption Standard) cores for
data encryption/decryption

— One AES (Advanced Encryption Standard) core for data
encryption/decryption that can use 128, 192 or 256 bit

keys

— Two SHA-1 (Secure Hash Algorithm) cores for
authentication

e Programmer chooses

NSD-Intel -- Chapt. 19 955 2004

Ctypto Unit
(continued)

e Support for
— The Electronic Code Book standard (ECB)
— The Cipher Block Chaining standard (CBC)
e Sufficient for
— IPsec
— SSL

NSD-Intel -- Chapt. 19 956 2004

Crypto Unit API

e |nput RAM (read/write to on-board RAM)
e State (set crypto parameters, e.qg. keys)

e Cipher (initiate cypher algorithm execution)
e Hash (initiate hash algorithm execution)

e Ultils (functions such as checksum calculation)

NSD-Intel -- Chapt. 19 S7 2004

Summary

e Microengines

NSD-Intel --

Low-level, programmable packet processors
Use RISC design with instruction pipeline
Have hardware threads for higher throughput
Use transfer registers to access memory

Use BUFs for I/O

Have access to hash and crypto units

Chapt. 19 58 2004

Questions?

XXI

Programming M odel

NSD-Intel -- Chapt. 21 1 2004

Assumptions About Support Software
And Overall Structure

e XScaeruns MontaVista Embedded Linux[]
e Code for XScale compiled to run under Linux
e Microengines do not run any OS
e Code for microengines compiled to run on bare machine
e Conseguences for programmers:
— Microcode handles all hardware details

— XScade coderelies on libraries and OS

NSD-Intel -- Chapt. 21 2 2004

Major Pieces Of Software

e One or more microblocks that run on the microengines
e A core component that runs on the XScale
e User interface code that runs on the XScale

e Note: we will concentrate on the first two

NSD-Intel -- Chapt. 21 3 2004

| nter connections Among Microblocks

e Each microblock is asynchronous
e [ast data path code built as series of microblock stages

e Basic pipeline architecture

NSD-Intel -- Chapt. 21 4 2004

Typical Network Systems

o At least three microblocks
— Ingress
— Processing

— Egress

NSD-Intel -- Chapt. 21 5 2004

Example Microblock Pipeline

() (I (I
input ingress process egress output
ports microblock microblock microblock ports
- J - J - J

e |ngress and egress microblocks
— Interface with MSF
— Handle packet I/O

e Process microblock

— Performs protocol processing

NSD-Intel -- Chapt. 21 6 2004

Assignment Of Microblocks To Microengines

e Approach #1
— Multiple types of microblocks run on each microengine
— Each thread runs one microblock
e Approach #2
— Each microblock runs on separate microengine
— Multiple copies (threads) used to increase performance

e |n practice, most systems use approach #2

NSD-Intel -- Chapt. 21 7 2004

Mpackets And Transfers

e MSF divides incoming packet into fixed-size units called
mpackets

e Mpacket size can be configured to be 64, 128, or 256 octets
e Each mpacket received independently

e Hardware sets bit to indicate first and last mpacket of a
packet

e Software divides outgoing packet into mpackets

e Each mpacket transmitted independently

NSD-Intel -- Chapt. 21 8 2004

Ingress And Egress Microblocks

e Available from building blocks library
e |ngress microblock
— Named Receive (RX)
— Invoked whenever an mpacket arrives
— Places mpacket in buffer in memory
e Egress microblock
— Named Transmit (TX)
— Invoked whenever an mpacket is ready for egress

— Releases buffer after mpacket is sent

NSD-Intel -- Chapt. 21 9 2004

Microblocks And Parallel Execution

e Microengine can be dedicated to run exactly one microblock
e Microengine can run multiple microblocks in a pipeline
e Multiple microengines can run copies of a pipeline

e Each approach has advantages and disadvantages

NSD-Intel -- Chapt. 21 10 2004

Packet Buffers

e Mechanism provided by SDK
e Set of fixed-size buffers allocates in DRAM
e Typica buffer size is 2048
e Buffer holds
— Packet (e.g., Ethernet frame)
— Control information called metadata

NSD-Intel -- Chapt. 21 11 2004

Placement Of A Packet In A Buffer

e Metadata occupies first 128 bytes of buffer
e Padding separates metadata from packet
e Optimizes memory access
— DRAM organized into four banks
— All banks can be accessed in parallél
— Bank starts at 128 bytes beyond previous
e Goal: distribute packet headers evenly over banks

NSD-Intel -- Chapt. 21 12 2004

Illustration Of Buffer Layout

metadata (128 bytes)

padding (0, 128, 256, or 384 bytes)

packet data

unused space

e Padding Is selected at random

NSD-Intel -- Chapt. 21 13 2004

Buffer Queues And Buffer Allocation

e Hardware support for high-speed buffer allocation
e Mechanism implements First-In-First-Out (FIFO)
— Singly-linked list
— Head and tail pointers
— Two basic operations
* Enqueue adds item at tall

* Degueue removes item from head

NSD-Intel -- Chapt. 21 14 2004

Buffer Queues And Buffer Allocation
(continued)

e FIFO mechanism

Provided by SRAM memory controller
— Known as Queue Array
e Packet queues kept in DRAM

e Linear mapping between items in SRAM Queue Array and
DRAM buffers

NSD-Intel -- Chapt. 21 15 2004

Mapping Between Queue Array And DRAM Buffers

Queue Array SRAM SDRAM
(head pointer) - T =
(tail pointer) . 2 L o
T -
J
e)

e Linear mapping between address of queue element Iin
SRAM and address of buffer in DRAM

NSD-Intel -- Chapt. 21 16 2004

Example Address M apping

e Thirty-two buffers allocated in DRAM
— Let B denote starting location
— Assume buffers are contiguous
e Queue of thirty-two list elements allocated in SRAM
— Let F denote starting location
— Assume elements are contiguous
— Known as free buffer list

e Let Abeaddress of list element in SRAM returned by
dequeue operation

NSD-Intel -- Chapt. 21 17 2004

Example Address M apping
(continued)

e Address of corresponding buffer in DRAM Is

B + : A F : x buffer size
free list eement size

buffer address

e Where buffer size denotes the size of a packet buffer

e Optimization: to avoid division, precompute

buffer size

DL DS RATIO = : :
- free list element size

and
DL REL BASE = B - F x DL DS RATIO

NSD-Intel -- Chapt. 21 18 2004

Example Address M apping
(continued)

e Once constants are precomputed, a buffer address is found
by:

bufferaddress = A x DL_DS RATIO + DL REL BASE

e Note: if buffer and free list elements are powers of two,
multiplication can be replaced by bitwise shift

NSD-Intel -- Chapt. 21 19 2004

Buffer Handle

e List element addressin SRAM
e Used as packet ID
e |strandated to buffer address as needed
e Congists of four bytes
— Three bytes correspond to SRAM address
— One byte used to pass additional information
* Beginning of packet
* End of packet
* Count of segments in the packet

NSD-Intel -- Chapt. 21 20 2004

Packet Discard

e Uses buffer handle
e Extremely efficient
e To discard, dequeue buffer handle on free list

e No other action required

NSD-Intel -- Chapt. 21 21 2004

Packet Forwarding Mechanism

e Hardware mechanism used for interprocess communication
e Supported by both SRAM and Scratch memories

e Known as Memory Ring

e Controller implements insertion and extraction

e Requests serialized and atomic

e Used for high-speed forwarding of packets among
microengines and XScale

NSD-Intel -- Chapt. 21 22 2004

Illustration Of Scratch Rings

XScale
core
component /)
Scratch
rings "
) Scratch
ring

, : | L |
|n ress | process | egress
mlcroblock microblock | microblock

E—

microengine 1 microengine 2 microengine 3

NSD-Intel -- Chapt. 21 23

Queue Array Hardware L imitation

e Hardware only has sixty-four Queue Array entries per
SRAM channel.

— | XP2400 has 2 SRAM channels
— IXP28xx has 4 SRAM channels

e Conseguence: cannot have arbitrarily many Rings

NSD-Intel -- Chapt. 21 24 2004

Overcoming The Queue Array Limitation

Resource manager allocates backup store in SRAM for each
Queue Array entry

When Queue Array exhausted, software

— Chooses one Queue Array entry (typically LRU)
— Copies entry to backup store

— Uses hardware dot for new Queue Array
Process is known as spilling

CAM can be used used to choose entry to spill

NSD-Intel -- Chapt. 21 25 2004

Core Processing

e Terminology
— XScaleisreferred to as core processor

— Software running on the XScale is called core
component

e Core processing
— Insufficient speed for fast path
— Reserved for exceptions

e Note: core processor has access to memory rings and gqueues

NSD-Intel -- Chapt. 21 26 2004

Summary

e Two maor types of software
— One or more microblocks
— Core component
e Microblocks interconnected in pipline
e SDK includes ingress and egress microblocks
o Packet buffers allocated in DRAM,; free list kept in SRAM
e Address of list element in SRAM called buffer handle

NSD-Intel -- Chapt. 21 27 2004

Summary
(continued)

e Linear mapping trandates buffer handle to DRAM address
when needed

e Packet discard is trivial (return buffer handle to free list)
e Memory ring mechanism used for |PC

e Queue array hardware provides finite set of queues; values
spilled to SRAM when necessary

NSD-Intel -- Chapt. 21 28 2004

Questions?

XX

XScale Facilities

NSD-Intel -- Chapt. 22 1 2004

XScale Responsibilities

e | oading microengine code

e Creating rings and/ or queues for communication

e Allocating and reclaiming resources such as memory
e Patching symbols in microcode

e Starting and controlling microengine operation

e Providing an external interface for management

e Providing an interface to operating system facilities

e Doing slow path processing of exception packets

NSD-Intel -- Chapt. 22 2 2004

Conceptual Organization Of XScale Software

e Several pieces of support software available
e Core component uses each piece directly or indirectly

e Each piece of support software implemented as a Linux
loadable kernel module

e Core component also implemented as a kernel module

NSD-Intel -- Chapt. 22 3 2004

Organization Of Software On XScale

Linux kernel

core component

CCl

Resource Manager

HAL Mev?2 Library

/ N\

OSSL HAL Me Driver

NSD-Intel -- Chapt. 22 4

Core Component Infrastructure (CCl)

e Support module

e Provides facilities to
— Create and run core components
— Setup timers

— Gilve each core component a private execution engine

NSD-Intel -- Chapt. 22 5 2004

Resource Manager (RM)

e Support module
e Among most important
e Provides facilities used to
— Access operating system services
— Manage memory and translate addresses
— Control microengines
— Load code into microengines

— Manage queue of exception packets sent to core
component

NSD-Intel -- Chapt. 22 6 2004

Operating System Specific Library (OSSL)

e Unfortunate name

e Role of the OSSL is operating system independence
e Core component calls OSSL function

e (OSSL function calls undelrying OS function

e Allows core component to remain independent of the
underlying OS

NSD-Intel -- Chapt. 22 7 2004

Hardware Abstraction Layer (HAL)

e Two HAL modules
— Library halMev2_lib provides control functions
— Module halMeDrv provides access to microengine CSRs

e |solate programmer from hardware details

NSD-Intel -- Chapt. 22 8 2004

Memory Management

e SRAM, DRAM, and Scratch memories shared among
microengines and XScale

e However

— Addressing schemes used by microengines and XScale
differ

— Parallel processors cannot attempt to allocate memory
without mutual exclusion

e SDK solution: all memory management (allocation and
deallocation occurs through Resource Manager on XScale

NSD-Intel -- Chapt. 22 9 2004

Memory Management Functions
In The Resource M anager

e X rm mem alloc
— Argument specifies DRAM, SRAM, or Scratch memory

— Although XScale uses single address space, Resource
Manager ensures allocation is made from specified
memory

e X rm mem free

NSD-Intel -- Chapt. 22 10 2004

Memory Allocation By Microengine

e Microengine
— Can make an allocation directly

— Must inform Resource Manager after allocation
complete

— Known as areservation
e To make areservation, core component calls

— IX_rm_mem reserve

NSD-Intel -- Chapt. 22 11 2004

Allocation Of Local Memory

e Only visible to individual microengine

e However, Resource Manager provides functions that allow
microengine to allocate and free Local Memory

— Ix_rm_mem local_alloc
— Ix_rm _mem local free

— IXx_rm _mem local reserve

NSD-Intel -- Chapt. 22 12 2004

Address Trandation

e [Functions in Resource Manager always return a virtual
address in the XScale' s address space

e Address must be translated to physical address before
microengine can use it

e Address from microengine must be translated to virtual
address before core component can use it

e All trandation performed by core component using
Resource Manager functions

— Ix_rm _get_physical offset

— IX_rm_get virtual address

NSD-Intel -- Chapt. 22 13 2004

Ring And Queue Creation

e Provided by Resource Manager
e Three functions
— IX_rm _hw_gueue create
— IX_rm_hw _sram ring_create
— IX_rm _hw_scratch ring create
e Return ahandle

e Value of handle can be predeclared and used as argument

NSD-Intel -- Chapt. 22 14 2004

Ring And Queue Deletion

e Also performed by Resource Manager
e Two functions
— IX_rm _hw_gueue delete

— IXx_rm_hw ring delete

NSD-Intel -- Chapt. 22 15 2004

e Performed by Resource Manager

Ring And Queue Manipulation

e Functions are

NSD-Intel --

IX_rm_hw_enqueue
IX_rm_hw_degueue
IX_rm_hw ring put

IX_rm_hw ring get

Chapt. 22

16

2004

Buffer Management Facilities

e Specia case of queue
e [unction to create free list IS

— Ix_rm buffer free list create

NSD-Intel -- Chapt. 22 17 2004

Basic Form Of Core Component

do forever {
wait for next packet from the microengines,
process the packet;

}

e Note: although macroengines typically send a packet, the
mechanism allows a microengine to send a ‘‘ message’’

NSD-Intel -- Chapt. 22 18 2004

Core Processing

e (Questions

— How does a core component avoid using the CPU while
waiting for a packet from the microengines?

— If multiple core components exist to process packets,
how is a given packet sent to the correct core
component?

— Can messages that arrive from microengines be
processed out-or-order?

e Answer
— Introduce an additional demultiplexing stage

— To send a message, microengine interrupts the
demultiplexing stage.

NSD-Intel -- Chapt. 22 19 2004

| llustration Of Core Architecture

29§

<«—— demultiplexing stage

core components (kernel threads)

g

=1

=2 =3

messages arrive ackets arrive
from microengines = = rom microengines

NSD-Intel -- Chapt. 22 20 2004

Patching Symbols And
L oading Microcode

e XScale loads microengine control store

e Symbolic references in code replaced by constant value
e Known as patching

e Allows values to change without recompilation

e Assembly import directive used to specify name and value
to the assembler

— .mport_var MY_CONSTANT

NSD-Intel -- Chapt. 22 21 2004

Differ ence Between |mport
And Defined Constants

e The code below produces an error (constant is too large)

#define MY _CONSTANT 0x12345678
au[addr, MY CONSTANT, +, 4]

e The following code compiles without an error (constant is
truncated during patching)

Amport_var MY _CONSTANT
auladdr, MY _CONSTANT, +, 4]

NSD-Intel -- Chapt. 22 22 2004

Use Of Immed32

e To avoid compiler error

dmport_var MY _CONSTANT

.reg temp value

Immed32(tmp_value, MY_CONSTANT)
au[addr, tmp value, +, 4]

NSD-Intel -- Chapt. 22 23 2004

Resour ce Manager API

e Allows a core component to

1. Read microcode from an external binary file and place it
In a structure.

2. Define the names and values of a set of imported
symbols.

3. Patch the microcode by replacing each imported variable
reference with the appropriate value.

4. Load the patched microcode into the microengine
Instruction store.

NSD-Intel -- Chapt. 22 24 2004

Example Of Using The Resource M anager

e | oad code from my file and patch imported constant
MY CONSTANT

IX_rm_ueng_set _ucode(my_name);

ImportSymbols[0].m_Name = "MY_CONSTANT";
ImportSymbols[0].m_Value = 0x12345678;
IX_rm_ueng_patch_symbols(me_number, 1, importSymbols);
IX_rm_ueng load();

NSD-Intel -- Chapt. 22 25 2004

Resource Manager Functions To
Control A Microengine

e To start a microengine

IX_rm_ueng_start()

e To stop a microengine

IX_rm_ueng_stop()

NSD-Intel -- Chapt. 22 26 2004

Summary

e XScale software includes
— Base operating system (Linux)
— Core components
— Support software

e Core component runs as a loadable Linux loadable kernel
module

e Each support software system also runs as Linux |oadable
kernel module

NSD-Intel -- Chapt. 22 27 2004

Summary
(continued)

e Support software includes

Resource M anager
Core Component Infrastructure
Operating System Specific Library

Hardware Abstraction Layer

e Resource Manager offers API for items such as

Memory management and address translation
Queue and Ring allocation

Control of microengines

NSD-Intel -- Chapt. 22 28

2004

Questions?

XXITI

Microengine Programming |

NSD-Intel -- Chapt. 23 1 2004

Microengine Code

e Many low-level detalls
e (Close to hardware

e Written in (micro)assembly language

NSD-Intel -- Chapt. 23 2 2004

Features Of Intel’s Microengine Assembler

e Directives to control assembly
e Symbolic register names
e Macro preprocessor (extension of C preprocessor)

e Set of structured programming macros

NSD-Intel -- Chapt. 23 3 2004

Statement Syntax

e Genera form:;

label: operator operands tokens

e |abdl is optional

e |nterpretation of tokens depends on instruction

NSD-Intel -- Chapt. 23 4 2004

Comment Statements

e Three styles available
— C style (between /* and */)
— C++ style (// until end of line)
— Traditional assembly style (; until end of line)

e Only traditional comments remain in code for intermediate
steps of assembly

NSD-Intel -- Chapt. 23 5 2004

Assembler Directives

e Begin with period in column one
e Can

— Generate code

— Control assembly process

e Example: associate myname with register five in the A
register bank

.areg myname S5 a

NSD-Intel -- Chapt. 23 6 2004

Example Operand Syntax

e |nstruction alu invokes the ALU
alu [dst, srcq, op, Srcy |

e [our operands
— Destination register
— First source register
— Operation
— Second source register

e Two minus signs (——) can be specified for destination, if
none needed

NSD-Intel -- Chapt. 23 7 2004

Major ALU Operations

Operator Meaning

+ Result is srcq + src,

- Result is srcq - src,

B-A Result is src, - src,

B Result is src,

~B Result is the bitwise inversion of src,

AND Result is bitwise and of src, and src,

OR Result is bitwise or of src, and src,

XOR Result is bitwise exclusive or of src, and src,
+carry Result is src, + src, + carry from previous operation
-carry Result is src, - src, - carry from previous operation
~AND Result is bitwise (not src,) and src,

AND~ Result is bitwise (src, and (not src,)

+8 Result is src, +src, with the first 24 bits set to zero
+16 Result is src, +src, with the first 16 bits set to zero

NSD-Intel -- Chapt. 23

2004

ALU Shift Operations

e Shifts or rotates src, before operation

e Syntax is

alu_snf [dst, srcq, op, Srcy, Srcy _shift_op |

NSD-Intel -- Chapt. 23 9 2004

Memory Operations

e Programmer specifies
— Type of memory
— Direction of transfer
— Address in memory (two registers used)
— Starting transfer register
— Count of words to transfer

— Optional tokens

NSD-Intel -- Chapt. 23 10 2004

Memory Operations

(continued)

e Generd forms

sram
dram

scratch

 direction, xfer_reg, addr, addr,, count

 direction, xfer_reg, addr, addr,, count

 direction, xfer_reg, addr, addr,, count

NSD-Intel -- Chapt. 23 11

, optional_tokens
, optional_tokens

, optional_tokens

Special Memory Operations

e Some memories offer special operations such as
— Test-and-set
— Atomic increment

e Operand direction used to specify special operations

NSD-Intel -- Chapt. 23 12 2004

Memory Addressing

e Specified with operands addr, and addr,
e Each operand corresponds to register
e Use of two operands can be used to

— Scale to large memory

— Use base + offset form

NSD-Intel -- Chapt. 23 13 2004

| mmediate I nstruction

e Place constant in thirty-two bit register

Immed [dgt, ival, shift |

e Upper sixteen bits of ival must be all zeros or all ones
e Operand snift specifies bit shift
O No shift
<<0 No snift (same as 0)

<<8 Shift to the left by eight bits
<<16 Shift to the left by sixteen bits

NSD-Intel -- Chapt. 23 14 2004

Other Forms Of Immed I nstruction

e Used to load part of aregister

Immed b0 Load byte zero (low-order byte) only
Immed bl Load byte one only

Immed b2 Load byte two only

Immed b3 Load byte three only

Immed wO Load word zero (low-order 16 bits) only
Immed wl Load word one only

NSD-Intel -- Chapt. 23 15 2004

Register Names

e Usually automated by assembler

e Directives available for manual assignment

Directive Type Of Assighment

.addr name a Manual assignment to bank A
.addr name b Manual assignment to bank B
.reg name Automatic assignment

NSD-Intel -- Chapt. 23 16

2004

Automated Register Assignment

Intel’s microengine assembler uses symbolic names for
registers, and then maps each name to a specific register. A
programmer can use directives to specify the mapping manually
or can allow the assembler to choose a mapping; for general-
purpose and next-neightbor registers, a programmer cannot mix
automatic and manual assignments.

NSD-Intel -- Chapt. 23 17 2004

Register Names And Meanings

e Name denotes type of register

Register Type Relative Absolute
General-purpose register_name @register_name
SRAM transfer $register_name -

DRAM transfer $$register_name -
Next neighbor n$register_name -

NSD-Intel -- Chapt. 23 18 2004

Register Allocation

e Hardware provides both read and write transfer registers
e Same numbers used

e Separate allocation functions

Xxfer read name
xfer _write name

NSD-Intel -- Chapt. 23 19 2004

L ocal Register Scope, Nesting, And Shadowing

e Programmer
— Uses .begin directive to declare register names
— Deéfines register names
— References names in instructions
— Uses .end to terminate scope
e Assembler
— AsSigns registers
— Chooses bank for each register

— Replaces names in code with correct reference

NSD-Intel -- Chapt. 23 20 2004

|llustration Of Automated Register Naming

e One or more register names specified after .begin

e Example

/)
.begin

code in this block can use
.reg myreg loopctr tot

/ registers myreg, loopctr, and tot
>

.end
-/

e Names valid only within scope

NSD-Intel -- Chapt. 23 21 2004

Nested Scopes

e Programmer specifies .begin and .end pair inside a .begin
.end pair
e |nnermost scope has precedence

e Intel says inner declarations shadow outer declarations

NSD-Intel -- Chapt. 23 22 2004

lllustration Of Nested Register Scope

: ‘
.begin
.reg myreg loopctr
begi R
- LIEC) Y t nested scope that defines registers
.reg rone rtwo - rone and rtwo
e outer scope that defines registers
—/ / myreg and loopctr
>
begi B
.begin : .
nested scope that defines registers
reg rthree rfour . rthree and rfour
.end
_J
.end

NSD-Intel -- Chapt. 23 23 2004

Register Assignments And Conflicts

e Operands must come from separate banks
e Some code sequences cause conflict
e Example:

Z - Q+R;

Y « R+S
X « Q+ S

e No assignment isvalid

e Programmer must change code

NSD-Intel -- Chapt. 23 24

2004

Macro Preprocessor Features

e Fileinclusion

e Symbolic constant substitution

e Conditional assembly

e Parameterized macro expansion
e Arithmetic expression evaluation

e |terative generation of code

NSD-Intel -- Chapt. 23 25 2004

Macro Preprocessor Statements

Keyword Use

#include Include a file

#define Definition of a symbolic constant (unparameterized)

#define_eval Definition of a symbolic constant equal to an arithmetic expression

#undef Remove a previous symbolic constant definition

#macro Start the definition of a parameterized assembly language macro

#endm End a macro definition started with #macro

#ifdef Start conditional compilation if specified symbolic constant has
been defined

#ifndef Start conditional compilation if specified symbolic constant has
not been defined

#if Start conditional compilation if expression is true

#else Terminate current conditional compilation and start alternative
part of conditional compilation

#elif Terminate current conditional compilation and start another
if expression is true

#endif Terminate current conditional compilation

#for Start definite iteration to generate a code segment a fixed number
of times

#while Start indefinite iteration to generate a code segment while a
condition holds

#repeat Start indefinite iteration to repeat a code segment as long as a
condition holds

#endloop Terminate an iteration

NSD-Intel -- Chapt. 23

26 2004

M acro Definition

e (Can occur at any point in program

e Generd form:;

H#NACr 0 name [parameter,, parameters, ... |
lines of text
#endm

NSD-Intel -- Chapt. 23 27 2004

Macro Example

e Computea=b+c+5

[* exanpl e nacro add5 conput es a=b+c+5 */
#nacro add5[a, b, c]
. begi n
.reg tnp
alu[tnp, c, + 5]
alu[a, b, + tnp]
. end
#endm

e Assumesvalues a, b, and c in registers

NSD-Intel -- Chapt. 23 28 2004

Macro Expansion Example

e (Call of addS[varl, var2, var3] expands to:

. begi n
.reg tnp
alutnp, var3, +, 5]
alufvarl, var2, + tnp]
. end

e \Warning: because macros use textual substitution, illegal
arguments can generate illegal code

NSD-Intel -- Chapt. 23 29 2004

Repeated Generation Of A Code Segment

e Macro preprocessor
— Supports #while statement for iteration

— Uses #define eval for arithmetic evaluation

e Can be used to generate sequence of code blocks

NSD-Intel -- Chapt. 23 30 2004

Example Of Repeated Code

e Preprocessor code:

#define LGP 1
#while (LGP < 4)

alu shf[{reg, -, B reg, >LAH
#define eval LGP LAP + 1

#endl oop
e Expands to:
alu shf[reg, -, B reg, >>1
alu shf[reg, -, B reg, >>2
alu shf[reg, -, B reg, >>3

NSD-Intel -- Chapt. 23 31

Structured Programming Directives

e Make code appear to follow structured programming
conventions

e Include break statement a la C

Directive Meaning
Af Conditional execution
Af_unsigned Unsigned version of .if
elif Terminate previous conditional execution and

.elif_unsigned
.else

.endif

.while
.while_unsigned
.endw

repeat

.until
.until_unsigned
.break

.continue

NSD-Intel -- Chapt. 23

start a new conditional execution

Unsigned version of .elif

Terminate previous conditional execution and
define an alternative

End .if conditional

Indefinite iteration with test before

Indefinite iteration (unsigned)

End .while loop

Indefinite iteration with test after

End .repeat loop

Unsigned version of .until

Leave a loop

Skip to next iteration of loop

32 2004

Example Of Conditional Compliation

1 f (conditional _expression)

/* bl ock of mcrocode statenents */
.elif (conditional expression)

/* bl ock of mcrocode statenents */
.elif (conditional expression)

/* bl ock of mcrocode statenents */

. el se
/[* block of mcrocode statenents */
.end f

NSD-Intel -- Chapt. 23 33

Tests That Can Be Used In
A Conditional Expression

Operator Meaning
BIT Test whether a bit in a register is set
BYTE Test whether a byte in a register equals a constant
COuUT Test whether a carry occurred on the previous operation
CTX Test the currently executing thread number
SIGNAL Test whether a specified signal has arrived for a thread

INP_STATE Test whether the thread is in a specified state

NSD-Intel -- Chapt. 23 34 2004

Mechanisms For Context Switching

e Context switching is voluntary
e Thread can execute:
— ctx_arb instruction

— Reference instruction (e.g., memory reference)

NSD-Intel -- Chapt. 23 35 2004

Argument To ctx_arb Instruction

e Determines disposition of thread
— voluntary: thread suspended until later

— signal_event: thread suspended until specified event
OCCUI'S

— kill: thread terminated

NSD-Intel -- Chapt. 23 36 2004

Context Switch On Reference I nstruction

e Token added to instruction to control context switch
e Two possible values
— ctx_swap: thread suspended until operation completes

— gig_done: thread continues to run, and signal posted
when operation completes

e Signals available for SRAM, DRAM, PCI bus, etc.

NSD-Intel -- Chapt. 23 37 2004

Example Of Context Switch

e To perform context switch while waiting for DRAM access.

dram|[read, $$rbufO, base, 2, 4], sig done [Sig name]

NSD-Intel -- Chapt. 23 38 2004

| ndirect Reference

e Poor choice of hame
e Hardware optimization
e Found on other RISC processors
e Result of one instruction modifies next instruction
e Avoids stalls
e Typical use
— Compute N, a count of words to read from memory

— Modify memory access instruction to read N words

NSD-Intel -- Chapt. 23 39 2004

Fields That Can Be M odified

e Microengine associated with a memory reference
e Starting transfer register
e Count of words of memory to transfer

e Context number of the hardware context executing the
Instruction (i.e., context to signal upon completion)

e The mask that specifies a set of signals

NSD-Intel -- Chapt. 23 40 2004

How Indirect Reference Operates

e Programmer codes two instructions
— ALU operation
— Instruction with indirect reference set

e Note: destination of ALU operation is—— (i.e., N0
destination)

e Hardware
— Executes ALU instruction

— Uses result of ALU instruction to modify field in next
Instruction

NSD-Intel -- Chapt. 23 41 2004

Example Of Indirect Reference

e Example code

au shf[——, ——, b, 0x13, << 16]
scratch [read, $reg0, addrl, addr2, O], indirect_ref

e Memory instruction coded with count of zero

e ALU instruction computes count

NSD-Intel -- Chapt. 23 42 2004

External Transfers

e Microengine cannot directly access
— Memory
— Buses (1/0 devices)

e |ntermediate hardware units used
— Known as transfer registers

— Multiple registers can be used as large, contiguous buffer

NSD-Intel -- Chapt. 23 43 2004

External Transfer Procedure

e Allocate contiguous set of transfer registers to hold data

o Start reference instruction that moves data to or from
allocated registers

e Arrange for thread to wait until the operation completes

NSD-Intel -- Chapt. 23 a4 2004

Allocating Contiguous Registers

e Registers assigned by assembler
e Programmer needs to ensure transfer registers contiguous
e Assembler provides .xfer_order directive

e Example: allocate four continuous SRAM input transfer
registers

reg $regl $reg2 $reg3 $regd
xfer_order_rd $regl $reg2 $reg3 $regs

e Notes
— Ordering affects both read and write registers

— Directive .xfer_order_wr available for output

NSD-Intel -- Chapt. 23 45 2004

Summary

e Microengines programmed in assembly language
e [ntel’s assembler provides

— Directives for structuring code

— Macro preprocessor

— Automated register assignment

e External data access performed through transfer registers

NSD-Intel -- Chapt. 23 46 2004

Questions?

XXIV

Microengine Programming ||

NSD-Intel -- Chapt. 24 1 2004

Specialized Memory Operations

e Ring and Queue manipulation
e Processor coordination (e.g., via atomic bit operations)

e Atomic memory operations (e.g incr, and decr)

NSD-Intel -- Chapt. 24 2 2004

Ring And Queue Manipulation

e SRAM controller provides Queue Array mechanism
e XScale used to create buffers in Queue Array

e Microengine can allocate buffer from free list
sram [dequeue, xfer, src_opy, Src_op, |, tokens
e Handle placed in xfer register

e src operands encode memory channel and Queue Array
number

NSD-Intel -- Chapt. 24 3 2004

Ring And Queue Manipulation

e Microengine can return buffer to free Isit

Sram [enqueue, ——, SIc_0pq, SIc_ops |

e Note: macros assume variables DL DS RATIO and
DL REL BASE have been defined

NSD-Intel -- Chapt. 24 4

2004

Processor Coordination
Via Bit Testing

e Provided by SRAM and Scratchpad memories
e Atomic operations on individual bits
e Mask used to specify bit in aword

e Generd form

scratch [cmd, $xfer, addr4, addr,]

e Operands addrq and addr, added to form address
e Register $xfer contains 32-bit mask

NSD-Intel -- Chapt. 24 5 2004

Bit Manipulation Commands

Operation

Meaning

set
clr
test_and_set

test_and_clr

NSD-Intel -- Chapt. 24

Set the specified bits to one

Set the specified bits to zero

Place the original word in the read transfer
register, and set the specified bits to one

Place the original word in the read transfer
register, and set the specified bits to zero

2004

Atomic Memory Operations

e Memory shared among
— XScale
— Microengines
e Need atomic increment to avoid incorrect results

e Generd form

scratch [operation, optional _value, addr4, addrs |

e optional value depends on operation being performed

NSD-Intel -- Chapt. 24 7 2004

Atomic Memory Operations
(continued)

e Possible atomic operations include:

Operation Meaning

incr Increment the specified word in memory

decr Decrement the specified work in memory

add Add the value in a transfer register to
the specified word in memory

sub Subtract the value in a transfer register

to the specified word in memory

NSD-Intel -- Chapt. 24 8 2004

Critical Sections And Folding

e Piece of code that referenes shared variables known as
critical section

e To ensure correctness, only one thread can execute a critical
section at any time (mutual exclusion)

e |XP2xxx solution: sequencing
— Set of threads placed in circular order
— Thread passes control the ‘‘next’’ thread

NSD-Intel -- Chapt. 24 9 2004

Steps Used For Sequencing

Let C be the context number (thread ID);
If (C ==0){

wait for signal from ‘‘previous’ microenging;
} else{

wait for signal from context C—1,

}

access the critical section;
If (C ==7){

signal ‘‘next’”’ microengine;
} else{

signal context C + 1;

}

NSD-Intel -- Chapt. 24 10 2004

Optimized Sequencing
e Steps for sequencing assume threads on a given microengine
IN consecutive positions of sequence
e To optimize data access

— First thread on microengine copies shared variable into
Local Memory

— Threads on microengine sequence and use local copy

— Last thread on microengine copies value back to external
memory

e Can be dynamic: use CAM to test whether variable isin
Local Memory

NSD-Intel -- Chapt. 24 11 2004

Control And Status Registers (CSRs)

e |XP2xxx has dozens of CSRs
e Provide access to hardware units on the chip

e Allow processorsto
— Configure
— Control
— Interrogate
— Monitor
e Access
— XScale: mapped into address space

— Microengines: specia instructions

NSD-Intel -- Chapt. 24 12 2004

Cap Instruction

e Used on microengines to access CSRs

e Generd form

cap [cmd, $xfer data, csr_address]

e cmdisread, write, or fast wr

NSD-Intel -- Chapt. 24 13 2004

High-Speed CSR Access

e Some CSRs reachable through fast data path
e Command fast_ wr provides fast-path access

e Generd form

cap|[fast wr, immediate data, CSR]

NSD-Intel -- Chapt. 24 14 2004

Reflection

e Move data from a transfer register on one microengine to a
transfer register on another microengine

e Uses cap instruction

e Genera form

cap[cmd, xfer, rem ME, rem reg, rem ctx, ref count |

NSD-Intel -- Chapt. 24 15 2004

Local CSRs

e Refer to individual microengine
e Can be accessed in single cycle
e Microengineissues local csr_rd or local csr wr instruction

e Example

local_csr wr[CSR, src]

NSD-Intel -- Chapt. 24 16 2004

Local CSRs

e Reading from local CSR reguires two steps

local csr rd[CSR]
Immed [destreg, O]

NSD-Intel -- Chapt. 24 17 2004

Intel Dispatch Loop Macros

e Each microengine executes infinite loop
— Each iteration checks for event and processes event

— Events are low level (e.g., hardware device becomes
ready)

— Known as dispatch loop

e SDK includes over forty predefined macros related to
dispatch loop

NSD-Intel -- Chapt. 24 18 2004

Examples Of Predefined Dispatch L oop M acros

Macro Purpose
dl_buf _init Initialize the buffer API
dl_buf_alloc Allocate a packet buffer
dl_buf free Deallocate a packet buffer

dl_buf get desc

dl_buf _get data
dl_meta_init_cache

dl_meta flush_cache
dl_meta_get_buffer_next
dl_meta_get_ offset
dl_meta_get free list
dl_meta_get rx_stat
dl_meta_get_buffer_size
dl_meta_get packet_size
dl_meta_get_input_port
dl_meta_set output_port

NSD-Intel -- Chapt. 24

Return SRAM pointer to metadata from a buffer
Return DRAM pointer to buffer data area
Populate a metadata cache

Flush metadata cache to SRAM

Move to next buffer in a chain

Find offset of data within a buffer

Find free list from which buffer was allocated
Extract receive status from a buffer

Find the size of data in a given buffer

Find the total size of a packet

Find the input port over which packet arrived
Set the output port to which packet will be sent

19

2004

Traffic Management And Packet Scheduling

e Scheduing requires keeping one queue per scheduled flow
e Cannot be achieved with straightforward data pipeline

e Solution: add microblock outside main pipeline

NSD-Intel -- Chapt. 24 20 2004

Arrangement Of Microblocks When
Packet Scheduling Used

[scheduler J

this stage can be l
replicated

e s s R S

e Queue manager and scheduler operate independently

NSD-Intel -- Chapt. 24 21 2004

Accessing Packet Header Fields

e Microengine insturctions do not address memory directly
e Packet header loaded into transfer registers
e Many detalls

NSD-Intel -- Chapt. 24 22 2004

Example Header Access Code (Part 1)

/* Allocate eight DRAM transfer registers to hold the packet header */
xbuf_alloc[$$hdr, 8]

[* Reserve two general-purpose registers for the computation */

Jbegin
reg base offset

[* Compute the DRAM address of the data buffer */
dl_buf get data[base, dl buffer handle]

[* Compute the byte offset of the start of the packet in the buffer */
dl_meta get offset[offset]

NSD-Intel -- Chapt. 24 23 2004

Example Header Access Code (Part 2)

/* Load thirty-two bytes of data from DRAM into eight DRAM */
[* transfer registers. Start at DRAM address base + offset */
dram [read, $$hdr0, base, offset, 4]

[* Inform the assembler that we have finished using the two */

[* registers. base and offset */
.end

[* Process the packet header in the DRAM transfer registers

[* starting at register $$hdr */

[* Free the DRAM transfer registers when finished */
xbuf free[$$hdr]

NSD-Intel -- Chapt. 24 24 2004

Dispatch Loop And Associated Variables

e Typical operation

— Check for arrival of packet on Hardware Ring from
previous microengine

— Invoke procedure to process packet

— Place packet on Hardware Ring that |eads to next
microengine

e Set of variables (registers) control operation of dispatch loop

NSD-Intel -- Chapt. 24 25 2004

Examples Of Intel Dispatch Loop Variables

Variable Size Value And Meaning
exception_id 8 bits ID of an exception handler on the XScale
exception_code 8 bits A value passed with an exception packet
dl_next_block 8 bits ID of next logical block for a packet
dl_buf_handle 32 bits Buffer handle for start of the packet
dl_eop_buf handle 32 bits Buffer handle for end of the packet
buffer_size 16 bits Length of the buffer containing the packet
packet_siz 16 bits Total length of packet (across all buffers)
buffer_offset 16 bits Offset of data from the start of the buffer
input_port 16 bits Logical port over which the packet arrived
rx_stat 4 bits Status flag bits (unicast, broadcast, etc.)
output_port_egress 24 bits Port over which packet is to be sent
output_port_fabric 8 bits Blade ID when multiple blades used
output_port_type 4 bits Hardware type of output interface
cache flags 4 bits Control header caching (64 bytes of packet)
next_hop_id 32 bits ID of the next hop for the packet
flow_id 32 bits Flow ID for metering/policing
queue_id 16 bits Output queue for traffic management

NSD-Intel -- Chapt. 24

26

2004

Header Caching

e Packetsresidein DRAM

e Accessing header fields is expensive

e To optimize access, copy header into Local Memory
e Think of copy as a cache

e SDK includes mechanisms to perfrom header caching

NSD-Intel -- Chapt. 24 27 2004

Packet 1/0

Physical frame divided into sixty-four octet units for transfer
Each unit known as mpacket
Division performed by interface hardware

Microengine uses M SF interface to transfer each mpacket
Separately

Hardware set two bits in RBUF to specify whether
— Mpacket is first packet of a frame

— Mpacket is last packet of aframe

Note: cell or small packet has both bits set

NSD-Intel -- Chapt. 24 28 2004

Packet 1/0
(continued)

e No interrupts
e NoDMA
e Digpatch loop in ingress or egress microblock uses polling

e Microengine performs transfer

NSD-Intel -- Chapt. 24 29 2004

|ngress Packet Transfer

e |ncoming mpacket moved from Recelve BUF into
— SRAM transfer registers
— Directly into DRAM

e DRAM transfer has form

msf [cnd, ——, addr4, addr,, count], tokens

NSD-Intel -- Chapt. 24 30 2004

| ngress Packet Transfer
(continued)

e Transfer to SRAM transfer register has the form

msf [cmd, $xfer, addr4, addr,, count]

NSD-Intel -- Chapt. 24 31 2004

Other 1/0O Details

e Microengine must
— Check status of mpacket to determine if
* MAC hardware detected problem (e.g., bad CRC)
* Mpacket arrived with no problems

— Check whether mpacket is first mpacket of a frame

NSD-Intel -- Chapt. 24 32 2004

Example Of Packet Processing

e |f mpacket isfirst of aframe, branch to start_of packet#

au[——, $rc, AND, 1]
br!=0[start_of packet#]

NSD-Intel -- Chapt. 24 33 2004

Summary

e Specia hardware facilities support
— Hardware Queues and Rings
— Bit testing
— Atomic memory operations
— Seguencing and folding
— CSR access
e Microengine executes event loop known as dispatch loop
— Checks for packets arriving
— Calls macro(s) to process each packet

— Sends packets to next specified destination

NSD-Intel -- Chapt. 24 34 2004

Summary
(continued)

e |ntel supplies large set of dispatch loop macros
e [ntel’s SDK provides microblocks for ingress and egress
e Frame is divided into mpackets for transfer

e Hardware sets bits to specify whether incoming mpacket is
first or last of aframe

e Microengine can transfer mpacket to SRAM transfer
registers or diretly to DRAM

NSD-Intel -- Chapt. 24 35 2004

Questions?

XXV

An Example Program

NSD-Intel -- Chapt. 25 1 2004

We Will

e Consider an example
e Examine all the user-written code

e See how the pieces fit together

NSD-Intel -- Chapt. 25 2 2004

Choice Of Network System

e Used to demonstrate
— Basic concepts
— Code structure and organization
e Needto
— Minimize code size and complexity
— Avoid excessive detall
— Ignore performance optimizations

e Example: Network Address Translator (NAT)

NSD-Intel -- Chapt. 25 3 2004

NAT System Assumptions

e Only two connections: one to the ISP and one to alocal
network

e Both connections are Ethernet
e Traffic restricted to
— TCP
— UDP
— ICMP echo and reply (ping)

e Applications do not pass |P address or protocol port
Information In the data stream

NSD-Intel -- Chapt. 25 4 2004

NAT System Assumptions
(continued)

e System will not handle fragmented datagrams or datagrams
with |IP options

e System will only handle communication initiated from local
computers (i.e., computers within the site)

e Use XScaeto handle all exceptions
e Will trandate port numbers as well as addresses (NAPT)

NSD-Intel -- Chapt. 25 5 2004

Conceptual NAT Topology

NAT

e NAT located between site and rest of Internet

e All packets between the site and the Internet pass through
the NAT box

NSD-Intel -- Chapt. 25 6 2004

Assumptions About Addresses

e Site hassingle valid IP address 192.168.0.2

e Default router at ISP has IP address 192.168.0.100

e Computers benind NAT box use net 10 addresses such as
— 10.0.0.1
— 10.0.0.5
— 10.0.0.13

NSD-Intel -- Chapt. 25 7 2004

[llustration Of NAT Addressing

connection to
ISP ISP (bridged)
10.0.0.0/8

S a i NAT J é [

Computers usi ng
192.168.0.100 192. 168 0.2 10 0.0.1 nonroutable addresses

NSD-Intel -- Chapt. 25 8 2004

NAT

e Changesfields in packet headers
— Source fields in outgoing packet
— Dedtination fields in incoming packet

e Uses atable to store trandation information

NSD-Intel -- Chapt. 25 9 2004

| llustration Of NAT Trandation Table

Local IP Local Port Remote IP Remote Port Protocol New Port

Address or ID Address or ID or ID
10.0.0.2 29000 128.10.2.1 80 TCP 1180
10.0.0.3 29000 128.10.2.1 80 TCP 1239
10.0.0.4 12 192.5.3.1 = ICMP 1630

e Table shows three simultaneous connections
— Computer 10.0.0.2 contacts 128.10.2.1:80
— Computer 10.0.0.3 contacts 128.10.2.1:80
— Computer 10.0.0.4 pings 192.5.3.1

NSD-Intel -- Chapt. 25 10 2004

e Each entry in NAT table corresponds to flow

Ports, Identifiers, And Ping

e [or TCP or UDP, flow is identified by

Source IP address

Source port number

Destination |P address

Destination port number

Replacement source port used by NAT

Protocol

NSD-Intel -- Chapt. 25 11

2004

Ports, Identifiers, And Ping
(continued)

e For ping, flow isidentified by

Source |P address

ID value in packet
Destination |P address
Repalcement ID used by NAT

Protocol

NSD-Intel -- Chapt. 25 12

2004

Dynamic NAT Table

e QOutgoing packet used to create entry in NAT table
e Tableisfixed size

e Conseguence: when table is full, must delete old entry when
adding a new entry

NSD-Intel -- Chapt. 25 13 2004

NAT Table Management

e Each entry contains countdown timer field
e Timer value
— Reset whenever entry used
— Decremented every second
e When timer reaches zero, entry available for reuse

e When entry must be removed from full table, entry with
oldest timer value is selected (LRU)

NSD-Intel -- Chapt. 25 14 2004

Optimization

e To avoid arithmetic operations. use bit shift

e Timer value initialized with high-order bit set

e On each tick of the clock, snift right one bit

e When bit is shifted all the way to right, value becomes zero

NSD-Intel -- Chapt. 25 15 2004

Organization Of The Code

e UsesIntel’s RX and TX microblocks to receive and send
packets

e Single NAT microblock handles fast-path translation and
forwarding

e Core component handles exceptions.

NSD-Intel -- Chapt. 25 16 2004

Five Main Pieces Of Code

e |Ingress (RX) microblock from Intel’s SDK
e NAT microblock to handle the fast data path
e Egress (TX) microblock from Intel’s SDK

e Core Component to handle exceptions ,User interface

NSD-Intel -- Chapt. 25 17 2004

| llustration Of Interconnections

XScale
e e

user process kernel thread explicit buffer free
~running running [for packet discard
interface app. core component[|

Scratch ring

for exception

packets i
ME 0x00 ME 0x01 ME 0x02

RX NAT 5 TX
microblock = microblock microblock

two Scratch
RBUF e TBUF
(MSF) (MSF)

e Hardware rings used for interonnection

NSD-Intel -- Chapt. 25 18 2004

Pur pose Of Core Component

System initialization. The core component performs the
usual startup tasks by patching symbols in the microcode,
loading microcode into microengines, and allocating
memory.

Exception packet processing. The core component handles
packets for which address trandation falls, and inserts new
entries in the address trandlation table as necessary.

Timer aging. Once each second, the core component
decrements the timer associated with each entry in the
address trand ation table.

User interface interaction. The code component interacts
with the user interface application to provide information or
respond to commands.

NSD-Intel -- Chapt. 25 19 2004

ARP Processing

e ARP processing needed to find hardware addresses of
— Router at ISP
— Local computers
e | ocal computers
— Treat NAT box as default router
— Send ARP request
e Router at |SP
— Isdefault router for NAT box
— EXxpects to receive ARP request

NSD-Intel -- Chapt. 25 20 2004

Handling ARP

e NAT box assumes local computers will semd ARP requests
e Single ARP request sent to router at |SP

— Performed at startup

— Packets for the ISP are discarded until a response arrives

e Valuesleft in ARP cache indefinitely

NSD-Intel -- Chapt. 25 21 2004

|mplementation Of The NAT Microblock

e Poll POS RX RING OUT in infinite loop
e When packet available, extract buffer pointer from ring
e Read and classify packet

— Place first 40 octets of packet in DRAM transfer
registers

— Nore: caching described later
e Check destination Ethernet address
e Verify packet is IP carrying TCP, UDP, or ping

NSD-Intel -- Chapt. 25 22 2004

Steps Taken In NAT Microblock (1)

do forever {
if (input ring nonempty) {
obtain buffer handle for next packet;
if (Ethernet destination address invalid)
discard the packet;
continue;
}
If (not an IP packet || not one of TCP,
UDP, or ICMP echo) {
send packet to core component;
continue;
}
If (packet originates from local computer) {
if (destination islocal) {
send packet to core component;
continue;

}
Check NAT table for outgoing match;

NSD-Intel -- Chapt. 25 23

2004

Steps Taken In NAT Microblock (2)

} else /* packet originates from Internet */ {
if (destination is not the NAT system) {
send packet to core component;
continue;

}
Check NAT table for incoming match;

}
if (NAT table lookup failed) {

send packet to core component;
continue;

}

NSD-Intel -- Chapt. 25 24

2004

Steps Taken In NAT Microblock (3)

Replace fields in packet headers,

Perform ARP lookup and set the Ethernet source
address and Ethernet destination address,

Pass packet to TX microblock;

}

NSD-Intel -- Chapt. 25 25 2004

Header Caching And Alignment

DRAM access extremely slow
To optimize: cache packet header in Local memory
Alignment

— Local memory optimized for access by multiples of 4
bytes

— Ethernet header contains 14 bytes

Further performance enhancement: shift header right by two
bytes when moving to Local memory (and shift back when
storing in DRAM).

Hardware instruction available

NSD-Intel -- Chapt. 25 26 2004

Summary Of Comparisons Performed

NSD-Intel -- Chapt. 25

Field In Packet Header Field In NAT Table

For outgoing packet (to the Internet)

Source IP address Local IP address
Source Port (or ID) Local Port or ID
Destination IP address Remote IP address
Destination Port (or ID) Remote Port or ID
IP Proto field Protocol

For incoming packet (from the Internet)

Source IP address Remote IP address
Source Port (or ID) Remote port or ID
Destination port (or ID) New Port or ID
IP Proto field Protocol

27

2004

| mplementation Of NAT L ookup

e Hashing used to identify bucket
— Extract fields from packet header

— Hash to get bucket number O through N-1
e Sequentia search within bucket

NSD-Intel -- Chapt. 25 28 2004

Hashing Details

e Fields selected for hashing depend on direction of packet
e Two hash tables

— Forward table for packets traveling to the Internet
(f_nat_table)

— Reverse table for packets arriving from the Internet
(r_nat_table)

— Must be linked together

NSD-Intel -- Chapt. 25 29 2004

Fields In NAT Table Entry

Size

Purpose

1 byte

1 byte

2 bytes
2 bytes
2 bytes
4 bytes
4 bytes

Valid flag (only left-most bit is used)
protocol

New port or ID

Local port (or ID)

Remote port (or ID)

Local IP address

Remote IP address

e Entry is exact multiple of DRAM access size

NSD-Intel -- Chapt. 25

30

2004

Auxiliary Parallel Arrays

e Store timers and pointers

e Are pardlel to the hash tables: the | item in an auxiliary
table corresponds to the | item in a hash table

e [our auxiliary arrays used
— Timer for forward entries, f timer
— Timer for reverse entries, r_timer
— Index for forward entries, f-index

— Index for reverse entries, r-index

NSD-Intel -- Chapt. 25 31 2004

lllustration Of Auxiliary Arrays

NSD-Intel -- Chapt. 25

f_nat_table

r_nat_table

f_index

r_index

32

f_timer

r_timer

2004

Header Fields That NAT Changes

Outgoing packet (to the Internet)

SOURCE IP — NAT system IP address
SOURCE PORT (or ID) — NAT New Port (or ID)

IP CHECKSUM — Adjusted IP header checksum
TCP or UDP CHECKSUM ~ Adjusted transport checksum

Incoming packet (from the Internet)

DEST. IP Address — Local IP Address
DEST. PORT (or ID) — Local Port (or ID)
IP CHECKSUM — Adjusted IP header checksum

TCP or UDP CHECKSUM ~ Adjusted transport checksum

NSD-Intel -- Chapt. 25 33 2004

Definition Of Constants For Entire System (1)

/* NAT shared defs.h - constants shared by mcrocode and core code
#def i ne NAT_DE- MAJCOR NUMBER 50 /* naj or nunier of NAT psuedo- devi ce
#defi ne NAT DR VER NAME "NAT* /* Nane of driver for NAT pseudo-devi ce
#define NAT DEV H LE "/dev/ NAT' /* FHle nane for NAT pseudo-devi ce
#defi ne PAORTS NUM 2 /* nunber of network interfaces
#define NAT IFC O /* external interfaces to outside world
#defi ne QNI P Ox(QDAB80064 /* Router’s | P address (192. 168. 0. 100)
#define NAT_ QC ID 65 /* 1D of core conponent for exceptions
/* Packet buffer paraneters: 64MB of buffers, 2048 bytes per buffer
#def i ne NUM BUFFERS 32* 1024

#defi ne BUF_ S ZE 2048

/* Menory channel s for free buffer list */

#defi ne BUF SRAM GHAN O

#def i ne BU- DRAM CHAN O

/* Qounter sizes. These are inplicitly defined in TX and RX bui | di ng

/* blocks. Nanely, there are four 4-byte counters per port, which, for
/* three ports gives 4*4*3=48 bytes for each counter region

#defi ne RC. ONTR S ZE 48

#defi ne TX ONTR S ZE 48

NSD-Intel -- Chapt. 25 34

*/
*/
*/

2004

Definition Of Constants For Entire System (2)

/* NAT tabl e size, which nust be a power of two */
#def i ne NAT TABLE S ZE 128*1024 /* 128K entries */

/* Hash bucket size for NAT table = 2"HASH BUCKET SH FT */
#def i ne HASH BUKET SH FT 3
#def i ne HASH BUKET S ZE (1<<HASH BUKET SH FT)

[* NAT table bit nask */
#define NAT _TABLE Bl T MASK ((NAT_TABLE S ZE>>HASH BUCKET _SH FT) - 1)

/* ARP tabl e size, which nust be a power of two */
#def i ne ARP_TABLE S ZE 256

[* ARP table bit nask */
#def i ne ARP_ TABLE B T MAK (ARP_TABLE S ZE-1)

/* Bhernet packet types that are recogni zed */
#def i ne ETH ARP 0x0806 /* ARP */
#define ETHIP 0x0800 /* IP */

/* 1P protocol types that are recogni zed */
#define | PT_WDP 17
#define |PT_ TGP 6
#define IPT_1QAQW 1

/* 1 QWP nessage types that are recogni zed */
#define | QW _ECHO REQ 8
#define IO EGHOREP O

NSD-Intel -- Chapt. 25 35 2004

Definition Of Constants For Entire System (3)

/* ARP operation types */
#define ARP REQ 1
#define ARP REP 2

/[* tiner aging interval in ns */
#def i ne AQ NG | NTERVAL 1000 /* 1 sec */

/* maxi numnuniber of attenpts to sel ect a new (unused) NAT port val ue */
#def i ne NEWNPCRT _ATTEWPS 30

/* nmaxi numnunber of attenpts to resol ve gateway MAC address */
#def i ne GVMAC RES ATTEIMPTS 3

/* nunber of mcroengi nes */
#defi ne ME NM 8

/* size of one microengi ne cluster */
#define ME(L SZ 4

/* macro to represent B hernet address as a byte array */
#defi ne ETH2B(X) \

((char*)&X))[0], ((char*)& X)) [1], ((char*)&X))[2], ((char*)&X))[3],\
((char*)&X))[4], ((char*)&(X))[5]

/* nmacro to represent | P address as a byte array */
#define I P2B(X) \

((char*)&X))[0], ((char*)&X))[1], ((char*)&X))[2], ((char*)&(X))[3]

NSD-Intel -- Chapt. 25 36

2004

Constants And Types For The User Interface (1)

/* NAT types.h -

typedef struct nat _entry s {

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
} nat_entry;

typedef struct arp entry s {

types used by the core conponent and user interface */

i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt

valid : 1;
unused : 7,
prot : 8;
nport : 16
| port : 16;
rport : 16
I p_addr | oc;
I p_addr_rem

unsigned int ip_addr;
unsigned int eth wo;
unsi gned short eth wi;

unsi gned short ifnum: 15;

unsigned short valid : 1;
unsi gned i nt unused,

} arp entry;

NSD-Intel -- Chapt. 25

/* an entry in a NAT table */

/* an entry in the ARP cache */

37

2004

Constants And Types For The User Interface (2)

typedef struct net if s { /* network interface structure */
unsigned int ip addr;
unsigned int eth wo;
unsigned int eth wi;

} net if;

typedef enumnat _cnd t { /* possible ioctl coomands for */
/* the NAT pseudo- devi ce */
S LENT=0, VERBCHE,

GET_RX GAONER AR RX GONER

GET_TX QAONER AR TX GONER

T ARP TABLE, ET _NAT TABLE, T TI MR TABLE
} nat_cnd;
#def i ne 1 NVALID QWD -1

NSD-Intel -- Chapt. 25 38 2004

Definitions Of Scratch Ring Constants

/* NAT scratch rings.h - constants used for Scratch Menory rings */

/* R ng used between the PAKET RX and NAT m crobl ocks */

#defi ne PKT_RX TO NAT_ S(R R NG 4

#def i ne PKT_RX TONAT SR RNG S ZE | X SCRATCH R NG S ZE 1K

/* Hrst ring for communi cating between NAT and Packet TX microbl ocks */
#define PAKET TX SRR NGO 6

#def i ne PACKET TX SRRNGO0 S ZE | X_ SCRATCH R NG S ZE 256

/* Second ring for communi cating between NAT and Packet TX mcrobl ocks */
#define PAKET TX SRR NG 1 7

#define PACKET TX SRRNG 1 S ZE | X_ SCRATCH R NG S ZE 256

/* Third ring for comuni cating between NAT and Packet TX microbl ocks */

#def i ne PACKET TX S(R R NG 2 8
#def i ne PACKET TX SRR NG 2 S ZE | X SCRATCH R NG S ZE 256

/* Fourth ring for communi cating between NAT and Packet TX mcrobl ocks */
#def i ne PAKET TX SRR NG 3 9
#def i ne PAKET TX SRR NG 3 S ZE | X SCRATCH R NG S ZE 256

NSD-Intel -- Chapt. 25 39

2004

Basic NAT Microblock (1)

/* NAT _mcrobl ock.uc - mcrocode for NAT processing */

/**/

/* Note: this file contains code for overall NAT processing, including */

/* code to obtai n incomng packets fromthe packet rx[] m crobl ock, */
/* check the packet, performNAT processing, if needed, and forward */
/* each packet to the correct transmt queue for the sphy nphy4 tx[] */
/* m crobl ock.)

/**/

#i ncl ude <dl _systemh>

#i ncl ude <stdnac. uc>

#i ncl ude <di spat ch_| oop. uc>
#i ncl ude <har dware. h>

ncl ude <NAT shared defs. h>
ncl ude <NAT nacr os. uc>

/* Define NAT table |location and paraneters */
.inport_var NAT TABLE BASE

#define_eval NAT TABLE BMNAT TABLE Bl T MASK
#defi ne_eval HASH BUCKET SZ HASH BUCKET S ZE
#def i ne_ eval H FT_ VAL 4+I—ASH BlD<EI' SHFT
#define eval NAT TABLE SZ NAT TABLE S ZE

/* Define ARP table location and paraneters */

.inport_var ARP TABLE BASE
#def i ne_eval ARP_TABLE BM ARP TABLE BI T MAXK

NSD-Intel -- Chapt. 25 40

2004

Basic NAT Microblock (2)

[* Define tiner table | ocation */
.inport_var Tl MR TABLE BASE

/* (btain the default gateway | P address */

.inport_var GATEWAY | P ACCR

/* otain configurations for each network interface */

.inport_var
.inport_var
.inport_var
.inport_var
.inport_var
.inport_var

|FO_IP

g%
S

7
S

TnZZ T
jup
=s=

#define_eval NAT | P ADCR | F/ **/ NAT | FQ **/ | P

/* Define Local nenory addresses */
#defi ne STEP 64
#define LMADDRD 0 O

#def i ne_eval
#def i ne_eval
#def i ne_eval
#def i ne_eval
#def i ne_eval
#def i ne_eval
#def i ne_eval

LM ADDRO 1 LM ACDRD 0+STEP
LM ADDRO 2 LM ADDRD_1+STEP
LM ADDRO_3 LM ADDRD_2+STEP
LM ADDRO_4 LM ADDRD_3+STEP
LM ADDRO 5 LM ADDRD_4+STEP
LM ADDRO_6 LM ADDRD_5+STEP
LM ADDRD_7 LM ADDRD_6+STEP

NSD-Intel -- Chapt. 25

41

2004

Basic NAT Microblock (3)

/*********************************/

/* Specify signals and regi sters */

/*********************************/

.Si g sig_scr_get
.Sl g sig scr_put
.Si g sig_pkt hdr
.Sig sig_dramw

; signal for scratch get

; signal for scratch put

; signal for packet header read
; signal for dramwite done

.reg tenp ; PR for internedi ate data

.reg zero ; (PR contai ning constant val ue O

.reg one ; (PR contai ning constant val ue 1

.reg ring ; scratch ring

.reg port ; input port nunber

.reg $txreq ; tx request to put on scratch rings
.reg eth_ipt ; PR contai ning ETH | P const ant (0x0800)
.reg NAT ip ; (PR contai ni ng NAT box | P address

.reg ctx_num ; context nuniber of the current thread
.reg if_out ; output interface to forward packet to

.reg BhDstVO B hDst WL
.reg f_nat_table
.reg nat_tab bit_ nask
.reg r_nat_table

; Bhernet address registers

; GPRwth NAT tabl e base

; GPRwth NAT table bit nask (size - 1)
; GPRwth reverse NAT tabl e base

.reg arp_tab ; GPRwth ARP tabl e base

.reg arp tab bit nask ; @PRwth ARP table bit nask (size - 1)
.reg f_tiner ; GPRwth tiner tabl e base

.reg r_tiner ; GPRwth reverse tiner table base

.reg gatewnay ip
.reg nat_port

regif ipif eehw if eth wl

; GPRwth default gateway |P address
; @PRwth port to substitute
; network interface settings

.reg IpHen IpSc Ipbst IpProt ScPort DstPort ; flow5-tuple

NSD-Intel -- Chapt. 25

42 2004

Basic NAT Microblock (4)

/* Alocation of transfer registers */

xbuf _al | oc[$$pkt hdr, 2, read wite]

xbuf _al | oc[$$entry w4, read wite]

xbuf _al | oc[$$i phdr, 10, read writ €]

xbuf _al | oc[$rdata, RX TO RUNC MBG S ZE, read]

/*********************************/

/[* Datainitialization */
/*********************************/

/* Fequently used constants */

i med[zero, O] /* O */
immed[one, 1] /* 1 */
i Mmed32(eth ipt,ETHIP) /* Bhernet type IP */

/* Gonstants that are specific to NAT */
i rmed32(NAT i p, NAT | P,

i Med32(f _nat _tabl e, NAT_TABLE BASE)

I med32(nat _tab bit _nask, NAT_TABLE BV

I mmed32(ar p_t ab, ARP_TABLE BASE)

I med32(arp_tab bit_nask, ARP_TABLE BV

i rmed32(f _tiner, T MER TABLE BASE)

I med32(gat enay i p, GATBMAY | P,
#define_eval NAT TABLE SZ B (NAT _TABLE S7<<4)
i rmed32(t enp, NAT_TABLE SZ B)

alu[r nat table f nat table, + tenp

I rmed32(t enp, NAT_TABLE &)
alu[r_tiner,f tiner,+ tenp|

NSD-Intel -- Chapt. 25 43

2004

Basic NAT Microblock (5)

/* Byte alignnent setting */
| ocal _csr_w [BYTE | NOEX 2]

[* btain the current context nunber */

| ocal csr_rd[active ctx sts]
I mmed[ct Xx_num O]

alu[ctx_num ctx_num AND, 0x07]

/* Set a Local nenory address */

Jf (ctx()=0)

I rmed[t enp, LM ACCRD 0]
.elif (ctx()==1)

I rmed[t enp, LM ACCRD 1]
.elif (ctx()=2)

I rmed[t enp, LM ACCRD 2]
.elif (ctx()==3)

I rmed[t enp, LM ACCRD_3]
.elif (ctx()=4)

I rmed[t enp, LM ACCRD 4]
.elif (ctx()==5H)

I rmed[t enp, LM ACCRD 5]
.elif (ctx()==06)

I rmed[t enp, LM ACCRD_6]
. el se

I rmed[t enp, LM ACCRD 7]

endi f

| ocal _csr_wr [ACTI VE LM ADDR 0, t enp)

NSD-Intel -- Chapt. 25

2004

Basic NAT Microblock (6)

/-k*****-k**************************/
/* Mai n | oop */
/-k*****-k**************************/
start#
/* Read a packet fromRX scratch ring */
alu shf[ring, --, B PKT_ RX TONAT SR R NG <<2]
scrat ch[get, $rdat a0, O, ri ng, RX TO FUNC MSG S ZH]
si g_done[si g_scr_get|]

/* Reset the exception register */
alu[dl _exception reg, --, b, 0]

/* Wit for the RXring read to finish */
ctx_arb[sig scr _get]

[* Check if ring is enpty */
alu--, $rdata0, -, 0]
beq[ri ng_enpt y#]

/* Rng is not enpty */

alu[dl _buf _handle,--,b,$rdata0] /* set buffer handl e */
alu[dl _eop buf handle, --,b,$rdatal] /* get eop paraneter */
alu[d _netal,--,b,$rdata2] /* get data offset */

alu[port, OxF, AND $rdatad, >>16] /* get input port */

/* lgnore packets fromports other than O or 1 */

alu[--,port, -, PARTS NLM
bge[dr op#]

NSD-Intel -- Chapt. 25 45 2004

Basic NAT Microblock (7)

/* Read the packet header (40 bytes) and assune H hernet */
eth_iphdr_| oad(dl _buf handl e, sig pkt hdr)

[* If frane type is not IP, send to the core */

al u[tenp, --, b, $$i phdr 3, >>16]

alu[--,tenp, xor,eth ipt]

bne[exception#], defer[2] /* defer - save sone cycles here */
al u[B hbst V@, - -, b, $3i phdr 0]

Id field wclr[BhDst W, 1100, $$i phdr 1]

/* A this point the code has an | P packet; check the type */
al u[| pProt, OxHF, and, $$i phdr 5]

br=byte[| pProt,0, | PT_TQP, tcp udp icnp# /* check for TGP */
br=byte[l pProt,O, | PT_UDP, tcp udp icnp# /* check for WDP */
br!=byte[lpProt, O, | PT_| W, exception# /* check for 1QW */

tcp_udp_i cnp#:
/* The packet carries TGP, WP or QWP */

/* Hnd the network interface data for the i nput port */
net if data get(port,if ip,if _eth w),if eth wl)

/* Verify that the Bhernet destination natches our address */
alu[--,if_eth w0, xor, B hDst VO]

bne[except i on#] , def er [1]

alu[--,if_eth wi, xor, B hDst W]

bne[except i on#] , def er[2]

NSD-Intel -- Chapt. 25 46 2004

Basic NAT Microblock (8)

/* Conpute the I P header size */
al u[I pH en, OxF, and, $$i phdr 3, >>8]

/* To sinplify the code, we do not deal wth IP options. */
/* If options are present, drop the packet */
alu[--,IpHen,-, 5

bgt [except i on#] , def er [3]

/* Sore a copy of the IP header in |local nenory */
byte align be--, $3i phdr 3]

byte_al i gn_be[*I $i ndex0Q[0] , $$i phdr 4]

byte al i gn _be[*I $i ndex0[1] , $$i phdr 5]

byte_al i gn_be[*I $i ndex0Q[2] , $$i phdr 6]

byte al i gn _be[*1 $i ndex0[3], $$i phdr 7]

byte al i gn_be[*I $i ndex0Q[4] , $$i phdr 8]

byte al i gn _be[*I $i ndexO[5] , $$i phdr 9]

byt e_al i gn_be[*I $i ndex0[6], O]

/* btain the | P source and destination addresses */

al u[I pDst, --, b, *I $i ndex0[4]]

alu[--,if_ip,xor,|pDst]

/* Branch if destination IPis local (i.e., the NAT box) */
beq[| ocal _dst#], defer[1]

aulpSc,--,b, *I $index0[3]]

NSD-Intel -- Chapt. 25 47 2004

Basic NAT Microblock (9)

/* A this point the packet conains TGP, UDP or IAQW, and has */
/* a non-local destination address. If the packet is incomng, */
/[* drop it. If the packet is outgoing, performNAT translation */
/* and send the packet to the Internet. */
al u[--, port, xor, NAT | FJ

beq[except i on#]

/* Read the source and destination ports (or QW type and ID */
read src_and dst_ports(NON LACAL DST, I pH en, | pProt,
SchPort, Dst Port)
Jf (IpProt = I PT_I QW)
[* 1If the packet is |QW, but not an echo request, */
/* send the packet to the core as an exception */
al u[--,DstPort, xor, | QW_EGHO RE(]
bne[except i on#] , def er [1]
al u[Dst Port, --, b, 0]
.endi f
/* PerfromNAT | ookup for an outgoi ng packet */
nat | ookup_out goi ng(1 pSc, S cPort, | pDst, Dst Port, | pProt,
nat port,if _out)
alu ScPort,--,b,nat_port]

NSD-Intel -- Chapt. 25 48

2004

Basic NAT Microblock (10)

t X_pkt #
/* 1f NAT | ookup failed, send the packet to core */
/* as an exception */
alu[--,--,~b,nat_port]

beq[except i on#]
.set if out /* inserted to prevent an assenbl er warning */

/* A this point, NAT | ookup has been successful, and the ARP */
/[* table must be consulted to determne the correct Bhernet */

/* address for the frane. */
alu[d exception reg, --, b, 1, <<10]

arp_|l ookup(if out, | pDst, & hDst V@, & hDst \AL)

alu[dl exception reg, --, b, 0]

/* Mdify the packet header */
nodi fy _and save packet header (i f_out, B hDst V@, B hDst WL, | pH en,
I pProt, | pSc, | pbst, ScPort, DstPort)

/* Qeate a TXrequest for transmt queue */

aluftenp, --, b, if _out, <<24] [* 27:24 output port */
|d fieldtenp, 0111, dl _buf handle] /* 23:00 buffer handl e */
alu[$txreq, tenp, (R one, <<31] /* 31 valid bit */

/[* bits 31:28 reserved */

/* Junp to Scratch ring wite for the corresponding port */

alutenp, --, b, if out, <<2]

junp[tenp,wite ring0#],targets[wite ring0# wite ringl#,\
wWite ring2# wite ring3#

NSD-Intel -- Chapt. 25 49 2004

Basic NAT Microblock (11)

wite ring0#

wite tx ring(0,start#)
wite ringl#

wite tx ring(l,start#)
Wite ring2#

wite tx ring(2, start#)
wite ring3#

wite tx ring(3,start#)

[* 1f Sratch ring is full -- wait voluntarily */
full _ringO#:

ctx_arb[voluntary], br[wite ring0#
full _ringl#:

ctx_arb[voluntary], br[wite ringl#
full _ring2#:

ctx_arb[voluntary], br[wite ring2#
full _ring3#

ctx_arb[vol untary], br[wite_ri ng3#]

| ocal dst#:
/* 1f the Destination | P address in an i ncomng datagramis */
/* not the address of the NAT box address, send the packet */
/* to the core as an exception. */
al u[--, I pDst, xor, NAT i p]
bne[except i on#]

NSD-Intel -- Chapt. 25 50 2004

Basic NAT Microblock (12)

/* A this point the i ncomng packet contains TdP, P, */
/* or 1OQW and has a local |P destination. Read the source */
/* and destination ports. */
read src_and dst_ports(NON LOCAL SRC IpH en, | pProt,
S cPort, Dst Port)
Jdf (IpProt = IPT_IQW)
[* 1If the packet is |QW, but not an echo reply, */
/* send the packet to the core as an exception. */
alu--,ScPort, xor, | QW _EGHO |
bne[except i on#] , def er[1]
alu Sckort,--,b, 0]
.endi f
/* PerformNAT | ookup for an i ncomng packet */
nat | ookup i ncom ng(| pDst, Dst Port, | pSc, S cPort, | pProt,
nat_port,if _out)
alu[DstPort,--, b, nat_port]
britx pkt# /* junp to the transm ssion code */

NSD-Intel -- Chapt. 25 51 2004

Basic NAT Microblock (13)

except i on#:
/* send to the NAT core conponent */
dl _exception_set(NAT_ QCID 0)
/* this is a packet (not nessage) */
dl _exception set _priority(0)
dl _exception_send(d buf handl e)

ring_enpt y#:
brstart# /* junp back to the nain | oop to continue probing */

drop#. /* Drop the packet by freeing its buffer */

dl _buf free(d buf handl e, BUF FREE LI STO)
br[start#] /* go back to the nain |oop start */

NSD-Intel -- Chapt. 25 92 2004

Macros Used To Implement NAT (1)

/* NAT nmacros.uc - Mcroassenbly nacros used wth NAT */

/***/

/* Macro to read source and destination ports fromUWDP or TCP packet */
/***/

#nacro read src_and dst _ports(callsite, hdr _len, IpPot,ScPort, DstPort)
. begi n
.reg buf offset sdramoffset pkt of fset
/* assune no | P options */
df (IpProt = IPT_1QW)
#f (streg(callsite,”’ NON LAOCAL SRC))
alu[DstPort, --, b, *I $i ndex0[6] , >>16]
al u[S cPort, OxHF, and, *1 $i ndexQ[5] , >>24]

#el se
alu[ScPort, --, b, *I $i ndexQ[6] , >>16]
al u[Dst Port , OXFF, and, *| $i ndexQ[5] , >>24]
#endi f
. el se
alu[ScPort, --, b, *I $i ndex0[5], >>16]
Id field wclr[DstPort, 0011, *I $i ndexQ[5]]
.endi f
.end
#endm

NSD-Intel -- Chapt. 25 53

2004

Macros Used To Implement NAT (2)

/***/

/* Macro to do NAT | ookup for packet wth local src */

/***/

#nacro nat | ookup_out goi ng(i p_addr | oc, | port,ip addr rem\

rport, prot, nport,if _out)

. begi n

.regcnt tnp offset entry wl tmoffset $tiner bm

.Si g hash _done read done wite done

xbuf _al | oc[$hash128 w 4,read wite€]

/* hash | P address, port and protocol */

al u[$hash128 w0, --, b, i p_addr_renj

al u[$hash128 wi, --, b, i p_addr | oc]

alu[entry wi, rport,or, | port, <<16]

al u[$hash128 w2, --, b, entry_ wi]

al u[$hash128 w3, --, b, prot]

hash_128[$hash128 w0, 1], si g_done[hash_done]

alufcnt,--, b, zero]

al u[nport, --, ~b, zer o]

ct x_ar b[hash_done]

/* conput e the hash val ue nod the nunber of buckets */

/* in the hash tabl e */

al u[of f set, $hash128 w0, and, nat _tab bit nask]

/* conputer byte offset into NAT table */

alu[offset,--,b,of fset,<<SH FT_VA]

al u[of fset, of fset, -, 16]

NSD-Intel -- Chapt. 25 54 2004

Macros Used To Implement NAT (3)

/* search the bucket linearly */
search start#:
al u[--, HASH BUKET &, -, cnt]
bl e[sear ch_done#]
al u[of f set, of f set, +, 16]
dranfread, $$entry w0, f nat tabl e, of fset, 2],
si g_done[read done]
ctx_arb[read _done]
/[* Verify that values in the entry natch the */
/* search keys */
/* check valid bit */
br bel r[$$entry W), 31, search start#|, defer|[3]
al u[cnt, cnt, +, one]
al u[t np, OxFF, and, $$ent ry w0, >>16]
alu[--,tnp, xor,prot] /* check protocol */
bne[search _start#], defer|[3]
alutmoffset,--, b, offset, >>4]
al u[tnp, tmoffset, and, 3]
alu[--,%entry wi, xor,entry wl] /* check ports */
bne[search _start#], defer|[3]
alutnp, --, b, tnp, <<3]
al u[tnp, 31, -, t np]
alu[--,%$entry w2, xor,ip_addr _loc] /* check local P */
bne[search _start#], defer|[3]
alu[--,tnp,or,zero] /* dummy instruction for */
/* indirect shift */
alu[$tiner_bm--, b, one, <<i ndi rect]
alu[--,$%entry w3, xor,ip addr renj /* check renote I P */
bne[sear ch_start #]

NSD-Intel -- Chapt. 25 955 2004

Macros Used To Implement NAT (4)

/* at this point, the code has found a match in the NAT */
/* table, and nust update tiner for the entry */
sranfset, $tiner_bmf _tiner,tmoffset],sig_done[wite done]
Id field wclr[nport, 0011, $$entry w0
alu[if_out,--,b, NAT | FJ
alu[ip addr | oc,--,b, NAT i p]
ctx_arb[wite done]
sear ch_done#:
.end
#endm

NSD-Intel -- Chapt. 25 956 2004

Macros Used To Implement NAT (5)

/***/

/* Macro to performNAT | ookup for a packet wth a local destination */
/***/
#nacro nat | ookup i ncomng(ip addr | oc, nport,ip addr rem rport, \
prot, Iport, if _out)

. begi n

.reg cnt tnp offset port tnp tmoffset $tiner bm

.Si g hash_done read done wite done

xbuf _al | oc[$hash128 w 4, read wit €]

/* hash | P address, port and protocol */

al u[$hash128 w0, --, b, i p_addr_renj

al u[$hash128 wi, rport, or, nport, <<16]

al u[$hash128 w2, --, b, prot]

al u[$hash128 wB, - -, b, zer 0]

hash_128[$hash128 w0, 1], si g_done[hash_done]

alu[cnt,--, b, zerQ]

alu[lport, --, ~b, zer o]

ct x_ar b[hash_done]

/* conput e the hash val ue nod the nunber of buckets */

/* in the hash tabl e */

al u[of f set, $hash128 w0, and, nat _tab bit nask]

/* conpute byte offset into NAT table */

alu[offset,--,b,of fset,<<SH FT_VA]

al u[of fset, of fset, -, 16]

NSD-Intel -- Chapt. 25 57

2004

Macros Used To Implement NAT (6)

/* search the bucket linearly */
search start#:
al u[--, HASH BUKET &, -, cnt]
bl e[sear ch_done#]
al u[of f set, of f set, +, 16]
dranfread, $$entry w0, r _nat tabl e, of fset, 2],
si g_done[read done]
ctx_arb[read _done]
/[* Verify that values in the entry natch */
/* the search keys */
/* check valid bit */
br bel r[$$entry W), 31, search start#|, defer|[3]
al u[cnt, cnt, +, one]
al u[t np, OxFF, and, $$ent ry w0, >>16]
alu[--,tnp, xor,prot] /* check protocol */
bne[search _start#], defer|[3]
alutmoffset,--, b, offset, >>4]
al u[port _tnp, 0, +16, $Sentry wi]
alu[--,port_tnp, xor,rport] /* check renote port */
bne[search _start#], defer|[3]
al u[tnp, tmoffset, and, 3]
al u[port _tnp, 0, +16, $Sentry wo]
/* check NAT (destination) port */
al u[--, port_tnp, xor, nport]
bne[search start#|, defer|[3]
alu[tnp, --, b, tnp, <<3]
alutnp, 31, -, tnp]
alu[--,$%entry w3, xor,ip addr renj /* check renote I P */
bne[search start#|, defer|[2]

NSD-Intel -- Chapt. 25 58 2004

Macros Used To Implement NAT (7)

alu[--,tnp,or,zero] /* dummy instruction for */
/* indirect shift */
alu[$tiner_bm--, b, one, <<i ndi rect]
/* at this point, the code has found a natch in the NAT */
/* table, and nust update tiner for the entry */
sraniset, $tiner bmr tiner,tmoffset], sig done[wite done]
alu[if _out,one, + NAT IFQ /* so that if_out!=NAT | FC */
alu[ip addr loc,--,b, $$entry w2]
alu[l port,--,b, $$entry_wi, >>16]
ctx_arb[wite donej
sear ch_done#:
.end
#endm

/***/

/* Macro to read B hernet and I P headers from DRAM */
/***/
#nacro et h i phdr | oad(buf handl e, req sig)

. begi n

.reg sdramoffset buf of fset

/* Read 40 bytes of ETH I P Header from DRAM */

/* (DORAMreads are in quadwords -- 8 bytes */

dl _buf get datalsdramoffset, buf handl €]

d _neta get offset[buf offset]

dranjread, $$i phdr O, sdram of f set, buf _of f set, 5], si g_done[req_si g]

ctx_arb[req sig]

.end
#endm

NSD-Intel -- Chapt. 25 59

2004

Macros Used To Implement NAT (8)

/***/

/* Macro to wite nodified Bhernet and | P headers from Local */
/* nenory back into CRAM */
/***/
#nacro eth_ iphdr_store(sdramoffset, buf offset, req sig)

byte align be[--,eth_ ipt]

byt e_al i gn_be[$$i phdr 3, *I $i ndex0[O]]

byte al i gn_be[$$i phdr 4, *|1 $i ndex0[1]]

byt e_al i gn_be[$$i phdr 5, *I $i ndex0[2]]

byte al i gn_be[$$i phdr 6, *| $i ndex0[3]]

byt e_al i gn_be[$$i phdr 7, *I $i ndex0[4]]

byte al i gn_be[$$i phdr 8, *| $i ndex0[5]]

byt e_al i gn_be[$$i phdr 9, *I $i ndex0[6]]

dranpwrite, $$i phdr 0, sdram of f set, buf _of f set, 5], si g_done[req_si g]
#endm

NSD-Intel -- Chapt. 25 60

2004

Macros Used To Implement NAT (9)

/***/

/* NMacro to update | P checksum */
/* cksumnew = cksumold + ol d val + ~new val */
/***/
#nacro cksumupd(cksumol d_val , new val)

. begi n

.reg x not_new val

alu[x,--,b,old val, >>16]

al u[cksum cksum +, x]

al u[cksum cksum +16, ol d_val]

al u[not_new val, --, ~b, new val |

al u[x, --, b, not_new val , >>16]

al u[cksum cksum +, x]

al u[cksum cksum +16, not _new val |

.end
#endm
/***/
/* Macro to add carry into checksum */
[* cksum= cksun®>16 + cksun®Oxffff */
[* cksum= cksun®>16 + cksun®Oxffff */

/***/

#nacr o cksum car ry(cksumn)
. begi n
.reg x
al u[x, --, b, cksum >>16]
al u[cksum x, +16, cksunj
al u[x, --, b, cksum >>16]
al u[cksum x, +16, cksunj
.end

#endm

NSD-Intel -- Chapt. 25 61

2004

Macros Used To Implement NAT (10)

/***/

/* Macro to nodify and store Bh frane header, |P packet header */
/[* and WDP, TCP, or | QWP packet header */
/***/
#nacro nodi fy and_save packet header (i f _out, B hDst V@, B hDst VL, | pH en, \
| pProt, I pSc, | pbst, ScPort, Dst Port)

. begi n

.reg tnp cksumbuf of fset pkt offset sdram offset

.regif ipif eehw if eth wl oldld ol dPorts ol dl pSc ol di pDst

.sig dramrd dramw 1 dramw?2

/* onpute sdramoffset for the buffer */
dl _buf get datalsdramoffset, d buf handl €]

/* Set the Bhernet header */

net if data get(if out,if ip,if _eth w), if eth wl)
al u[$$i phdr 0, - -, b, B hDst VO]

al u[$%i phdr 1, B hDst WL, or, i f _et h w0, >>16]

dol _shf[$$i phdr2,if eth w0, if _eth wi, >>16]

/* Wodate the | P header */

| d field wclr[cksum 0011, *I $i ndexO[2]]
alu[ol dl pSc,--,b,*l $i ndex0[3]]

al u[ol dl pDst, - -, b, *I $i ndex0[4]]

/* cal cul at e new checksum */

cksum upd(cksum ol dl pSc, | pS c)

cksum upd(cksum ol dI pDst, | pDst)

cksum car ry(cksum)

NSD-Intel -- Chapt. 25 62

2004

Macros Used To Implement NAT (11)

/* Save the new checksumand | P addr esses */
| d field *l$indexQ[2], 0011, cksunj

al u[*1 $i ndexQ[3], --, b, | pS]

al u[*I $i ndex0[4], --, b, | pDst]

/[* Lpdate the TGP, WDP, or |IOW header. Note: we assune that */
/* the datagramdoes not contain I P options */
Jdf (IpProt = IPT_IQW)

NSD-Intel --

/* Wdate the | QW header */
Il d field wclr[cksum 0011, *| $i ndexO[5]]
alu[oldid,--,b,*l $i ndex0[6], >>16]
Jdf (IpSc = NAT i p)

cksum upd(cksumol di d, S cPort)

I d field *l$indexQ[6], 1100, S cPort, <<16]
. el se

cksum upd(cksum ol di d, Dst Port)

I d field *l$indexO[6], 1100, Dst Port, <<16]
.endi f
cksum car r y(cksun)
| d field*l$indexQ[5], 0011, cksunj
d _neta get offset[buf offset]
/* Save the nodified Bhernet and | P headers */
eth i phdr_store(sdramoffset, buf of fset,dramw 1)

Chapt. 25 63 2004

Macros Used To Implement NAT (12)

. el se
/* Lpdate the TGP or WCP header */
d _neta get offset[buf offset]
Jdf (IpProt = IPT_TCP
al u[pkt _of fset, buf _of f set, +, 48]
. el se
al u[pkt _of fset, buf _of f set, +, 40]
.endi f
/* Read the old WDP or TCP checksum */
dranfread, $$pkt hdr 0, sdram of f set, pkt _of f set, 1],
si g_done[dramrd]
al u[ol dPorts, --, b, *I $i ndexQ[5]]
al u[*I $i ndexQ[5], Dst Port, or, S cPort, <<16]
/* Save the nodified Bhernet and | P headers */
eth i phdr_store(sdramoffset, buf of fset,dramw 1)
/[* Vit for the checksumto be read */
ctx_arb[dramrd]
Jdf (IpProt = IPT_TCP
| d field wclr[cksum 0011, $$pkt hdr 0]

. el se
al u[cksum - -, b, $$pkt _hdr 0, >>16]
/* |f WP checksumis 0, no update needed */
al u[- -, cksum xor, zer o]
bne[wai t #]
.endi f

cksum upd(cksumol dl pSc, | pS c)
cksum upd(cksum ol dI pDst , | pDst)

NSD-Intel -- Chapt. 25 64 2004

Macros Used To Implement NAT (13)

alu[tnp, DstPort, or, S cPort, <<16]
cksum upd(cksum ol dPort s, t np)
cksum car r y(cksun)
Jdf (IpProt = IPT_TCP
al u[tnp, --, b, cksunj
I'd field[tnp, 1100, $$pkt hdr O]
. el se
al u[tnp, --, b, cksum <<16]
I'd field[tnp, 0011, $$pkt hdr O]
.endi f
al u[$$pkt _hdr0, --, b, t np]
al u[$$pkt _hdr 1, --, b, $$pkt hdr 1]
drampwrite, $$pkt _hdr O, sdram of f set, pkt _of f set, 1],
si g_done[dram wr 2]
ctx_arb[dramw 1, dramw 2], br [done#]

.endi f
vai t #:

ctx_arb[dramw 1]
donet:

.end
#endm

NSD-Intel -- Chapt. 25 65

2004

Macros Used To Implement NAT (14)

/***/

/* Macro to obtain a copy of network interface settings */
/***/
#nacro net _if data get(ifnumif _ip,if_eth wo,if_eth wl)
alu[tenp, --, b, i fnum <<3]
junp[tenp, if O#, targets[if O# if 1#]
/* set network interface paraneters */
i f_O#
inmed[if_ip, IFO_IPF
imed wWi[if _ip, |FO_IP>>16]
i med[i f_eth w0, | FO_ETH VO
inmed wWA[if_eth wO, | FO_ETH V@>>16]
br[end of if table#],defer[2]
inmed[if_eth wi, | FO_ ETH W]
inmed WA[if_eth wi, | FO_ETH WI>>16]
nop /* added for alignnent */
it 1#
inmed[if _ip, IFLIPF
immed WA[if _ip, |FLIP>>16]
i nmed[i f_eth_wo, | F1_ETH VO]
i mmed_wA[if_eth V\O | FL_ETH V@>>16]
inmed[if_eth wi _ETH W]
i mmed WA[i f et V\ﬂ. F1 ETH W>>16]
end of if tabl e#
#endm

NSD-Intel -- Chapt. 25 66

2004

Macros Used To Implement NAT (15)

/***/

/* NMacro to performARP tabl e | ookup */
/***/
#nacro arp_| ookup(port, | pDst, B hAddr V@, B hAddr VL)

. begi n

.reg ip addr cnt tnp offset $hash48 wd $hash48 wi

.reg $entry w0 $entry wi $entry w2

. Si g hash_done read _done

.xfer_order $hash48 w0 $hash48 wi

.xfer_order $entry w0 $entry wl $entry w2

Jf (port = NAT_IFOQ

alu[ip addr, --, b, gatewnay ip]
. el se
alu[ip addr,--, b, | pbst]

.endi f

/* Hash the | P address */

al u[$hash48 w0, --, b, i p_addr]

al u[$hash48 wi, - -, b, zer o]

hash_48[$hash48 w0, 1], si g _done[hash_done]

alufcnt,--, b, zero]

ct x_ar b[hash_done]

/* Gonput e the hash val ue nod the size of the ARP table */

al u[of f set , $hash48 w0, and, arp_tab bit nask]

/* Gonpute the byte offset into the ARP table */

alu[of fset,--, b, of fset, <]

/* Adjust the start of the table */

al u[of fset, of fset, -, 16]

NSD-Intel -- Chapt. 25 67 2004

Macros Used To Implement NAT (16)

/* Search the tabl e sequentially */
arp search start#:
alu--,arp tab bit_nask, -, cnt]
bl t[exception#] /* Iookup failed */
al u[of f set, of f set, +, 16]
al u[of f set, of f set, and arp tab bit nask, <<4]
sranfread, $entry V\D arp_tab, of f set, 3], ctx_swap| read_done]
alu[--,%entry wo, xor, i p_addr]
bne[ar p_sear ch_start#] ,defer[1]
al u[cnt, cnt, +, one]
br_bclr[$entry w2, 0, arp search_start#]
arp_search _end#:
/* Set the word O of the B hernet address */
al u[B hAddr V9, --, b, $entry_wi]
/* Set word 1 of the Bhernet address */
|d field wclr[BhAddrWL, 1100, $entry w2]
/* Set the output port */
|d field wclr[if_out,0011, $entry w2, >>1]
.end
#endm

/***/

/* Macro to wite the current packet on the TX ring */
/***/
#nacro wite tx ring(ring _numl abel)
#define_eval RN PACKET _TX SCR R NG /**/ring_num
“br_inp state[SIRRNG**/RN**/ FUL, full _ring/ **/ring_nunm**/#
scrat chl put , $t xr eq, zer o, (R\<2) , 1], si g_done[si g_scr_put]
ctx_arb[sig scr _put],br[|abel]
#endm

NSD-Intel -- Chapt. 25 68 2004

Core Component Responsibilities

e |nitialization (performed once at startup)
e Processing exception packets
— ARP request with the NAT system as the target

— ICMP echo request with the NAT system as the
destination

— TCP, UDP, or ICMP Echo, packet for which no NAT
table entry exists

— Note: other packets are dropped
e Processing requests from the user interface

e Cleanup (performed once at shutdown)

NSD-Intel -- Chapt. 25 69 2004

Core Component | mplementation

e Divided into three files
e Conceptual purpose
— Initialization and driver for pseudo device

— Packet handler

— Definitions of protocol headers (include file)

NSD-Intel -- Chapt. 25 70 2004

Core Initialization And Pseudo-Device Driver (1)

/* NAT pseudo dev.c - NAT core conp. & driver (Linux kernel nodule) */

#include < inux/kernel.h> [/* Gode runs in the Li nux kernel */
#include < inux/nodule.h> /* The code runs as a kernel nodul e */
#include < inux/fs. h> /* NAT pseudo device is a character device */

ncl ude <asni uaccess. h> /* Needed for conmunication wth user space */

#i ncl ude <enpv2_types. h>

#include <ix_ rmh> /* Qode uses the | XA Resour ce Manager */
#undef LI NUX /* Prevents the conpiler fromconplaining */
ncl ude <i x_cc. h> /* (ode uses the | XA J */

ncl ude < x_cci.h>

ncl ude "NAT shared defs. h"
#i ncl ude "NAT types. h"
#i ncl ude "NAT scratch rings. h"

#defi ne ME_ MASK 0x07 /* systemuses mcroengines O, 1 and 2 */
#def i ne GQONTEXT_MASK 255 /* context nask -- enable all contexts */

#defi ne HASH MLT V@ 0x12345678 /* hash mul tiplier -- word 0 */
#defi ne HASH MILT WL 0x87654321 /* hash multiplier -- word 1 */
#defi ne HASH MLT V@2 0x56781234 /* hash mul tiplier -- word 2 */
#defi ne HASH MLT V8 0x43218765 /* hash mul tiplier -- word 3 */

NSD-Intel -- Chapt. 25 71 2004

Core Initialization And Pseudo-Device Driver (2)

/* nmacro to log error nessage and termnate resource nanager */
#define panic(...) { printk("9%: ", NAT DR VER NAME) ; \
printk(_ VA ARS);\
Ix_ rmterng);\
unregi ster _chrdev(NAT _naj or, NAT DR VER NAMB) ; \
return(-1); }

/* macro to clear bl ock of kernel nenory */
#def i ne bzero(buf, si ze) ix_ossl _nenset (buf, O, si ze)

/* nacro to convert mcroengi ne sequence nunier */
/* into mcroengine ID */
#define MEIDQi) ((IMEQA)| ((i/MEA_<<4))

/* nmacro to convert SRAMoffset and nenory channel into */
/* mcroengi ne addressi ng */
#def i ne ME_SRAM ALDR of f set , nenthan) \

((nenthan) ?(of f set | (0x20000000<<nenthan)) : of f set)

/* Mdul e paraneter -- a UJF file nane */

static char * Wf file;

/* Mbdul e paraneter -- Linux naj or device nunber for NAT psuedo device */
static unsigned int NAT naj or = NAT DEH- MAJAR NUMBER

MIDULE AUTHCR "I nt er networ ki ng Lab, CS Purdue ULhiversity");
MIDULE DESCR PTI QN[" NAT pseudo- devi ce driver for | XP2XXX');
MDULE PARM Wof file, "s");
MIDULE PARM NAT naj or, "i");

NSD-Intel -- Chapt. 25 72 2004

Core Initialization And Pseudo-Device Driver (3)

/* Satic gateway | P address */
unsigned int gateway ip= GNIP,

/[* Satic network interface configuration */
net if iface tabl e PARTS NUM ={
{O0x@QDA80002 /* 192.168.0.2 */,
0x01010101, 0x01010000 /* 01:01:01:01:01: 01 */},
{Ox0A000001 /* 10.0.0.1 */,
0x02020202, 0x02020000 /* 02: 02: 02: 02: 02: 02 */} };

/* External procedures */

extern ix_error nat_pkt handl er (i x_buffer handl e, i x_ui nt 32, voi d*);
extern ix_error resolve arp(unsigned int);

/* Local procedures */

static int patch _mcrobl ocks(ix buffer free |list_info);
static int create scr_rings();

static int init_hash();

static ix _error nat_table tiner(void*);

static ix error exe init_f(ix exe handl e, voi d**);
static ix _error exe fini _f(ix exe handl e, voi d*);
static ix error cc_init f(ix cc handl e, voi d**);
static ix error cc_fini _f(ix cc _handl e, voi d*);
static ix_exe handl e exeHandl g;

static ix_cc_handl e ccHandl €;

static ix_event handl e eveHandl e;

static int nat_open(struct inode *, struct file *);

NSD-Intel -- Chapt. 25 73 2004

Core Initialization And Pseudo-Device Driver (4)

static int nat_rel ease(struct inode *, struct file *);
static int nat ioctl(struct inode *, struct file *,
unsi gned int, unsigned | ong);

/* Verbosity | evel */
int verb=S LENT;

/* Pointers to various run-tine data structures */
nat_entry *f nat table, *r_nat table;

unsigned int *f_index, *r_i ndex;

arp entry *arp_tabl e;

unsi gned char *f _tiner, *r_tiner;

void *rx _cntr, *tx cntr;

/* Scratch rings */
i X_hw ring_handl e rxToNat R ng, txScrR ng[4];

/* List of free buffers */
ix_buffer free |list handl e hwFreelist = 0;

/* (perations for the NAT pseudo-device */
static struct file operations nat fops = {

loctl: nat_ioctl,
open: nat _open,
rel ease: nat rel ease

NSD-Intel -- Chapt. 25 74 2004

Core Initialization And Pseudo-Device Driver (5)

static int nat_open(struct inode *inode, struct file *filp)

{
MDD | NC USE GOUNT;
return O;
}
static int nat_rel ease(struct inode *inode, struct file *filp)
{
MID DEC USE GAWNT;
return O;
}

static int nat ioctl(struct inode *inode, struct file *fp,
unsigned int cnud, unsigned | ong buf)
{

swtch (cnd) {
case S LENT:
verb = S LENT;
br eak;
case VHRB(EE
verb = VERBCEE
br eak;
case (ET_ARP TABLE
if ((char *)buf !'= NLL)
return copy _to user((char *)buf,arp table,
ARP TABLE S ZF*si zeof (arp_entry));
br eak;

NSD-Intel -- Chapt. 25 75 2004

Core Initialization And Pseudo-Device Driver (6)

case (T NAT TABLE
if ((char *)buf !'= NLL)
return copy_to user((char *)buf,
(void*)f _nat table,
NAT TABLE S ZE*si zeof (nat _entry));
br eak;
case (I _TI MR TABLE
if ((char *)buf !'= NLL)
return copy_to user((char *)buf,
(void*)f _tiner, 2*NAT _TABLE S ZF);
br eak;
case (ET RX GONIER
if ((char *)buf !'= NLL)
return copy to user((char *)buf,rx cntr,
RX ONTR S ZB) ;
br eak;
case (I TX GANIER
if ((char *)buf !'= NLL)
return copy_to user((char *)buf,tx cntr,
TX ONTR S ZB) ;
br eak;
case (LR RX GONIER
bzero(rx cntr, RX ONTR S ZE) ;
br eak;
case (AR TX GANIER
bzero(tx _cntr, TX ONIR S ZEB);
br eak;
defaul t:
return | N\VALI D QWD

}

NSD-Intel -- Chapt. 25 76 2004

Core Initialization And Pseudo-Device Driver (7)

return O;
}
int init_nodul e()
{
Ix_error err;
i x_buffer free list info hwHeelistlnfo;
int 1;

if (Wf file = NLL) {
printk("%: no mcrocode file specified\n",
NAT DR VER NAME) ;
return -1;

}

/* Register the pseudo-device wth Linux */
if (register chrdev(NAT naj or, NAT DR VER NAME, &nat fops) < 0) {
printk("9%: can't get na or nuniber 9%\ n",
NAT R VER NAME, NAT naj or);
return -1,

}

/* Initialize Intel’s Resource Manager */
printk("%: Initializing Resource Manager\n", NAT DR VER NAMB);
err=ix_rminit(0);
it (err !'=1X SUTESS {
printk("Eror: ix rminit faled\n");
return -1,

NSD-Intel -- Chapt. 25 77 2004

Core Initialization And Pseudo-Device Driver (8)

/* Register the exception packet handl er */
printk("9%: Setting packet receive node (to cal |l back)\n",
NAT DR VER NAME) ;
err = ix rmpacket set recei ve node(NAT QC I D
| X COW | D MIE CALLBAXK) ;
It (err !'=1X SUTESS

pani c("i x_rmpacket set receive node failed\n");
printk("9: Registering packet handl er\n", NAT DR VER NAME) ;
err = ix_ rmpacket handl er register(NAT GQC 1D nat_pkt handl er,

NULL) ;
if (err !'=1X SUTESS

pani c("ix_rmpacket handl er register failed\n");

/* Alocate a free buffer list */
err =ix rmhwbuffer free |list_create(NJM BUFFERS,
si zeof (i x_hw buffer neta), BUF S ZE
BUF SRAM CHAN BUF DRAM CHAN &hwFr eeli st) ;
It (err !'=1X SUTESS
pani c("ix_rmhw buffer free list create failed\n");
/* Read freelist info (it wll be needes |ater) */
err = ix rmbuffer free |ist_get info(hwreelist,

&hwFr eelli st I nf o) ;
if (err !'=1X SUTESS
pani c("ix_rmhw buffer free list get info failed\n");

NSD-Intel -- Chapt. 25 78 2004

Core Initialization And Pseudo-Device Driver (9)

/* Alocate RX counters (SRAM channel 0) */
err = ix_rmnemall oc(l X MEMRY TYPE SRAV O,
RXONTR S ZE, & x_cntr);
It (err !'=1X SUTESS
pani c("ix_rmnemal loc failed for RX counters\n");
/* Qear RX counters */
bzero(rx_cntr, RX ONTR S ZB) ;

/* Alocate TX counters (SRAM channel 1) */
err = ix_rmnemalloc(l X MEMRY TYPE SRAV 1,
TXNTR S ZE &x cntr);
it (err !'=1X SUTESS
pani c("ix_rmnemal loc failed for TX counters\n");
/* Qear TX counters */
bzero(tx_cntr, TX ONTR S ZB);

/* Alocate the NAT table in DRAM*/

err = ix_rmnemall oc(l X MEMRY TYPE CRAV O,
2*NAT _TABLE S ZF*si zeof (nat _entry),
(voi d**) & nat table);

if (err !'=1X SUTESS

pani c("ix_rmnemal loc failed for NAT tabl e\n");

/* Qear the NAT tabl e */

bzero((voi d*)f_nat tabl e, 2*NAT_TABLE S ZE*si zeof (nat_entry));

/* Set the base address for reverse NAT table */

r nat _tabl e=f nat tabl e+tNAT TABLE S ZE

NSD-Intel -- Chapt. 25 79 2004

Core Initialization And Pseudo-Device Driver

NSD-Intel --

/* Alocate the NAT index table in CRAM*/

err = ix_rmnemall oc(l X MEMRY TYPE CRAV O,
2*NAT TABLE S ZF*si zeof (unsi gned int),
(voi d**) & i ndex):

if (err != IXSLLIESS)

pani c("ix_rmnemal loc failed for NAT i ndex table\n");

/* Qear the NAT index table */

bzero((voi d*)f i ndex, 2*NAT_TABLE S ZEsi zeof (unsigned int));

/* Set the base for the reverse NAT index table */

r i ndex=f_i ndex+NAT_TABLE S ZE

/* Alocate the tiner table in SRAM*/

err = ix_ rmnemall oc(l X MEMRY TYPE SRAM O, NAT TABLE S ZE,
(voi d**) & tiner);

if (err !'=1X SUTESS

pani c("ix_rmnemalloc failed for tiner table\n");

/* Qear the tiner table */

bzero((voi d*)f_tiner, 2*NAT_TABLE S ZbB);

/* Set the base address for the reverse tiner table */

r tiner=f_tiner+NAT_TABLE S ZE

/* Alocate the ARP table in DRAM*/
err = ix_ rmnemall oc(1 X MEMRY TYPE SRAV 1,

ARP TABLE S ZE*si zeof (arp entry), (void**)&arp table);

if (err != | X SUIESS

pani c("ix_rmnemalloc failed for ARP table\n");
/* Qear the ARP tabl e */
bzer o((voi d*) arp_tabl e, ARP_ TABLE S ZE*si zeof (arp_entry));

Chapt. 25 80

(10)

2004

Core Initialization And Pseudo-Device Driver (11)

/* Reset the mcroengi nes */
printk("%: Resetting all mcroengi nes\n", NAT R VER NAMB);
IXx_rmueng reset_all();

/* Gt the mcrocode fromthe U file */
printk("9: Setting ucode\n", NAT CR VER | ;
err = ix_rmueng_set ucode(Wf file);

it (err !'=1X SUTESS

pani c("i x_rmueng_set ucode failed\n");

/* Patch the mcrocode synbol s before actual ly */

/* | oadi ng m crocode. */
I f (pat ch_m crobl ocks(hwH eeLi stInfo) < 0)
return(-1);

/* Qreate scratch rings */
if (create scr_rings() < 0)
return(-1);

/* Load microcode i nto mcroengi nes */
printk("9%: Loadi ng ucode\n", NAT DR VER NAME);
err = ix rmueng |oad();

if (err !'=1X SUTESS

pani c("i X rmueng_l oad failed\n");
/[* Initialize hash unit */

if (init_hash() < 0)
return(-1);

NSD-Intel -- Chapt. 25 81 2004

Core Initialization And Pseudo-Device Driver (12)

/* Sart the assigned microengi nes */
for (i=0;i<ME NMi++) {
if ((ME_MASKS>i) &0x1) {
printk("%: Starting ME2b\n", NAT DR VER NAME, i);
err = ix rmueng_start(MEIDQi), CONTEXT MAXK);
if (err =1 X SUXESS

pani c("ix_rmueng start failed for ME %\n",i);

}

/* Resolve an ARP entry for the gateway */
iIf (resolve arp(GNIP) =1 X SUXESS

pani c("can't resolve ARP entry for the gateway\n");

/* Qreate an execution engine (i.e., a kernel thread) for the */
/* NAT tiner agi ng procedure */
err=ix _cci _init(); /* Initialize Intel’s G */
It (err !'=1X SUTESS

pani c("ix_cci _init failed\n");
printk("%: Geating tiner thread\n", NAT DR VER NAME) ;
err=ix_cci_exe run(NLL,exe init f,exe fini f,"NAT tiner",

&exeHandl e) ;

if (err =1 X SUTESS {

ix_cci_fini();

pani c("ix_cci_exe run failed\n");
}

return O;

NSD-Intel -- Chapt. 25 82 2004

Core Initialization And Pseudo-Device Driver (13)

/* Qeanup */
voi d cl eanup_nodul e()
{
Ix_error err;
int i;

/* Sop each of the assigned m croengi nes */
for (i=0;i<ME NMi++) {
if ((ME_MASKS>i) &0x1) {
printk("%: Sopping MEA\n", NAT DR VER NAME, i) ;
err = ix rmueng_stop(MEID(i));
if (err =1 X SUXESS
pri nt k(
"06: iXx rmueng stop failed for ME %\n",
NAT DR VER NAME i) ;

}

/* Uregister the packet handl er */
I Xx_rmpacket handl er unregister(NAT QC1D;

/[* Termnate the tiner thread */

printk("%: Sopping tiner thread\n", NAT DR VER NAME) ;
| Xx_cci _exe_shut down(exeHandl e) ;

ix_cci_fini();

NSD-Intel -- Chapt. 25 83 2004

Core Initialization And Pseudo-Device Driver (14)

/* Termnate the Resource Manager */
Ix_rmternf);

/* unregi ster pseudo-devi ce */
unregi ster _chrdev(NAT naj or, NAT DR VER NAMB) ;

}
/* NAT tabl e nanagenent: periodically go through the tiner table */
/* and update (age) each of the tiners */
ix_error nat_tabl e tiner(void* dummy)
{

int i;

for (i=0;i<2*NAT _TABLE S ZE i ++)
iIf (f_nat_table[i].valid)
f tiner[i]=f _tiner[i]>>1;

return(l X SUTESS ;
}
ix_error exe init_f(ix exe handl e exeHandl e, voi d** ppQCont ext)
{
I Xx_cc_init_context durmmy;
return ix _cci_cc create(exeHandl e, cc init f,cc fini f,
(voi d*) &dummy, &ccHandl e) ;
}
ix_error exe fini _f(ix _exe handl e exeHandl e, voi d* pQGont ext)
{
return i x_cci_cc_destroy(ccHandl e);
}

NSD-Intel -- Chapt. 25 84 2004

Core Initialization And Pseudo-Device Driver (15)

ix_error cc_init_f(ix _cc hand e ccHandl e, voi d** ppQCont ext)

/* Age each tiner every AQ NG| NIERVAL */
return i x _cci_cc_add event handl er (ccHandl e, AG NG | NTERVAL,
nat _table tiner, | X EVENT TYPE PER (O C 1, &evetHand!) ;

}
ix_error cc_fini _f(ix_cc hand e ccHandl e, voi d* pQGont ext)
{
return i x_cci_cc _renove event handl er (ccHandl e, eveHandl e) ;
}

NSD-Intel -- Chapt. 25 85 2004

Core Initialization And Pseudo-Device Driver (16)

/**/

/* Patch the mcrocode synbol s before actual ly | oadi ng mcrocode. */

/* */
/* The inported variabl es that nust be patched are: */
/* BUF FREE LISTO -- get fromfreelist allocation, */
/* used by al | mcrobl ocks */
/* BUF SRAM BASE -- get fromfreelist allocation, */
/* used by al | mcrobl ocks */
/* DL REL BASE -- conpute fromfreelist allocation */
/* paraneters, used by all mcrobl ocks */
/[* FREE LIST ID -- get fromfreelist allocation (RX ubl ock) */
/* PACKET GONTERS SRAMBASE -- get fromnenory al | ocation for */
/* RX counters, used by RX ubl ock */
/* PACKET TX GONTER BASE -- get fromnenory all ocation for */
/* TX counters, used by TX ubl ock */
/* ARP TABLE BASE -- get fromnenory all ocati on, */
/* used by NAT mcrobl ock only */
/* NAT TABLE BASE -- get fromnenory all ocati on, */
/* used by NAT mcrobl ock only */
/* TIMER TABLE BASE -- get fromnenory al | ocati on, */
/* used by NAT mcrobl ock only */
[* GATEWAY | P AR -- gateway | P address, hardcoded, */
/* used by NAT mcrobl ock only */
/[* TFOIP, IFLIP, */
/[* IFO_ ETH VO, |FO ETH WL, */
/[* IFL ETHVW0, IFL ETHW -- interface settings frominterface */
/* tabl e, used by NAT mcrobl ock only */

/**/

NSD-Intel -- Chapt. 25 86 2004

Core Initialization And Pseudo-Device Driver (17)

int patch_mcrobl ocks(ix buffer free list info hwHeelistlnfo)

{
I x_error err;
I X_i nported _synibol inportSyniol s[15] ;
I X_ui nt 32 nenthan;
| X_ui nt 32 of f set;

/* Set common syntol s */
| npor t Syniool s[0] . m Nane="BUF _FREE LI STO";
| npor t Syntool s[0] . mVal ue = hwHreelLi st nfo. mFreeli st nfo;

I npor t Synibol s 1] . m Nane="BUF_SRAM BASE';

err = ix rmget phys of fset(hwF eeli st nfo. mpMet aBaseAddr ess,
NLLL, &menthan, &of f set, NLLL) ;

if (err !'=1X SUTESS

pani c("ix rmget phys offset failed for 9%\n",
I npor t Syniol s[1] . m Nane) ;
| nport Synool s[1] . m Val ue = ME SRAM ALCR of f set , nenthan) ;

| nport Syntool s[2] . mNane = "0OL_RA. BASE',

err = ix rmget phys of f set (hwF eeLi st | nf 0. m pDat aBaseAddr ess,
NLLL, &nenthan, &of f set, NLLL) ;

if (err !'=1X SUTESS

pani c("ix rmget phys offset failed for 9%\n",
I npor t Syniol s[2] . m Nane) ;
| npor t Syntool s[2] . mVal ue = offset -
((i nport Synibol s[1] . m Val ue* hwF eeLi st | nf o. m Dat aH enent S ze) /
hwF eeLi st | nf o. m Met aH enent S ze) ;

NSD-Intel -- Chapt. 25 87 2004

Core Initialization And Pseudo-Device Driver (18)

/* Set RX specific synibols */
i npor t Synipol s[3] . m Nane="PACKET_COUNTERS SRAM BASE';
err = ix rmget phys offset(rx_cntr, NLLL, &menthan, 80ffset NLLL) ;
i f (err =1 X SUXESS
pani c("ix_rmget phys offset failed for 9%\n",
I npor t Syniool s[3] . m Nane) ;
I npor t Syntool s[3] . mVal ue = ME_ SRAM AR of f set , nenthan) ;

| npor t Syntool s[4] . m Nane="FREE LI ST | D';
| nport Syniool s[4] . mVal ue = hwH eeli st nfo. mFreeLi st nf ol

/* Patch ME Ox00 -- RX mcrobl ock */
err = ix_rmueng_patch syniol s(0x00, 5, i nport Synbol s) ;
it (err !'=1X SUTESS

pani c("i x_rmueng_patch synbol s failed for RX mcrobl ock\n");

/* Set NAT specific synbols */
|rrportS/rrlDoI s[3] . m Nane="NAT_TABLE BASE';
err = ix rmget phys offset((voi d*)f nat table,
NLLL, &entChan, &of f set, NULL) ;
if (err !'=1X SUTESS

pani c("ix_rmget phys offset failed for 9%\n",
I npor t Syndol s[3] . m Nane) ;
i npor t Synibol s[3] . mVal ue = of f set;
i npor t Synbol s[4] . m Nane="ARP TABLE BASE';
err = ix_rmaget phys offset((void*)arp_t abI e,
NLLL, &enthan, &of f set, NLLL) ;

NSD-Intel -- Chapt. 25 88 2004

Core Initialization And Pseudo-Device Driver (19)

It (err !:IX_SLLIESS)
pani c("ix rmget phys offset failed for 9%\n",
I npor t Syniol s[3] . m Nane) ;
| npor t Syntool s[4] . m Val ue = ME_SRAM ACCR of f set , nenthan) ;
i npor t Synibol s[5] . m Nane="GATEMAY | P ADDR';
i npor t Synibol s[5] . m \Val ue=gat eway i p;
| npor t Syniool s[6] . m Nane="1 FO_| P*;
i npor t Synibol s[6] . m \Val ue=i f ace | tabl e[0].ip addr;
i npor t Synibol s[7] . m Nane="1FO_ETH V0" ;
i npor t Synbol s[7] . m Val ue=i f ace_t abl e[O] et h_wo;
i npor t Synibol s[8] . m Nane="1F0_ETH W";
i npor t Synibol s[8] . m Val ue=i f ace t abl e[O] eth wi;
i npor t Synbol s[9] . m Nane="1 F1_| 1P
i npor t Synibol s[9] . m Val ue=i f ace | tabl e[1].ip addr;
i npor t Synibol s[10] . m Nane="1 F1_ETH V0"
i npor t Synibol s[10] . m Val ue=i f ace t abl e[1] . et h wo;
i npor t Synbol s[11] . m Nane="1 F1_ETH W";
i npor t Synibol s[11] . m Val ue=i f ace_t abl e[1] . eth wi;
i npor t Synbol s[12] . m Nane=""TI MER TABLE BASE';
err = ix_rmaget_phys_of f set ((voi d*)f_ti ner,
NLLL, &enthan, 80ffset, NLLL) ;
It (err !'=1X SUTESS

pani c("ix_rmget phys offset failed for 9%\n",

I npor t Syniool s[3] . m Nane) ;
| npor t Syniool s[12] . m Val ue = ME_ SRAM ALCR of f set , nenthan) ;

NSD-Intel -- Chapt. 25 89 2004

Core Initialization And Pseudo-Device Driver (20)

/* Patch ME OxO1l -- NAT microbl ock */
err = ix_rmueng patch synbol s(0x01, 13, i nport Synbol S) ;
if (err !'=1X SUTESS

pani c("i X _rmueng_patch synbol s failed for NAT mcrobl ock\n");

/* Set counter base for TX */
| npor t Syniool s[3] . m Nane="PAKET TX CONIER BASE';
err =ix_ rmget phys offset((void*)tx cntr,
NLLL, &enthan, &of f set, NLLL) ;
it (err !'=1X SUTESS

pani c("ix_rmget phys offset failed for 9%\n",
I npor t Syniool s[3] . m Nane) ;
I npor t Syntool s[3] . m Val ue = ME_ SRAM AR of f set , nenthan) ;

/* Patch ME Ox02 -- TX mcrobl ock */
err = ix_rmueng_patch syniol s(0x02, 4, i nport Synbol s);
if (err !'=1X SUTESS

pani c("i X _rmueng_patch synbol s failed for TX mcrobl ock\n");
return(l);

NSD-Intel -- Chapt. 25 90 2004

Core Initialization And Pseudo-Device Driver (21)

/* Function to create RX and TX scratch nenory rings */
int create scr_rings()
{
Ix_error err;
err = ix_rmhw scratch ring create(0,
(PKT_RX TO NAT SCR R NG S ZE>>9),
PKIT R TONAT SRR NG & xToNat R ng);
if (err !'=1X SUJESY

pani c("ix_rmhw scratch ring create failed for R<->Nat ring\n");

err = ix_rmhw scratch ring create(0,
(PACKET_TX SR R NG 0_SI ZE>>9)
PACKET TX SCRR NGO, &xScrRng[0]);
if (err != IXSLKIESS)
pani c("ix_rmhw scratch ring create failed for TX 0 ring\n");
err = ix_rmhwscratch ring_create(0,
(PAKET_ TX SRR NG 1 S 7ZB>9),
PAKET TX SRR NG 1, &xScrRng[l]);
iIf (err != IXSLLIESS)
panl c("ix_rmhwscratch ring create failed for TX 1 ring\n");
err = ix_rmhwscratch ring_create(0,
(PACKET_TX SSR R NG 2_S ZB>>9),
PAKET TX SSRR NG 2, & xScrRng[2]);
It (err !'=1X SUTESS
pani c("ix_rmhw scratch ring create failed for TX 2 ring\n");
err = ix rmhwscratch ring create(0,
(PAKET_TX SR R NG 3 S ZB>>9),
PACKET TX SR RNG 3, & xScrRng[3]);

NSD-Intel -- Chapt. 25 91 2004

Core Initialization And Pseudo-Device Driver (22)

if (err !'=1X SUTESS
pani c("ix_rmhw scratch ring create failed for TX 3 ring\n");
return(l);

NSD-Intel -- Chapt. 25 92 2004

Core Initialization And Pseudo-Device Driver (23)

/* Function to initialize the 128-bit and 48-bit hash multipliers */
int init_hash()

Ix_error err;
I Xx_hash nul tiplier 128 hashl128m
I Xx_hash nul tiplier_48 hash48m
hash128m m LV@=HASH MLT V;
hash128m m LWI=HASH MLT W,
hash128m m LV2=HASH MLT V2;
hash128m m LV8=HASH MLT V3,
printk("9%: Setting hash 128 nultiplier to 0x%8X08X08X208X n",
NAT CR VER NAME,
(unsi gned i nt)hash128m mLVB, (unsigned int)hash128mm LV,
(unsi gned i nt)hash128m m LW, (unsigned int)hash128m m LVQ);
err=ix_rmhash_128 mul tiplier_set (&ashl128n);
It (err !'=1X SUTESS
pani c("ix_rmhash 128 miltiplier _set failed\n");
It (err !'=1X SUTESS
pani c("ix_rmhash 64 multiplier set failed\n");
hash48m m LV@=HASH MLT V@;
hash48m m LMI=HASH MLT W,
printk("9%: Setting hash 48 multiplier to Ox%98X008X n",
NAT CR VER NAME,
(unsi gned i nt)hash48mm LW, (unsigned int)hash48m m LVO);
err=ix_rmhash 48 nmul tiplier_set (&ash48n);
if (err '=1X.
pani c("ix_rmhash 48 multiplier set failed\n");
return(l);

NSD-Intel -- Chapt. 25 93 2004

Packet Formats Used By The Core (1)

/* NAT net.h - protocol declarations used by the core conponent */

/* Bhernet packet header */
typedef struct eth s {
unsi gned char e dst[6];
unsi gned char e src[6];
unsi gned short e type;
unsi gned short datal1];
} eth;

/* ARP packet header */

typedef struct arp s {
unsi gned short ar_hrd;
unsi gned short ar _pro;
unsi gned char ar_hl n;
unsi gned char ar_pl n;
unsi gned short ar_op;
unsi gned char ar_shal 6] ;
/* declared as two shorts for alignnent */
unsi gned short ar_spal,
unsi gned short ar_spa2;
unsi gned char ar_thal 6];
unsigned int ar_tpa;

} arp;

NSD-Intel -- Chapt. 25 94 2004

Packet Formats Used By The Core (2)

/* 1 P packet header */
typedef struct ip s {

}ip

unsigned char ipv : 4
unsigned char ip hl : 4;
unsi gned char ip_tos;
unsi gned short ip_|en;
unsi gned short ip_id;
unsi gned short ip_frag;
unsigned char ip ttl;
unsi gned char ip_p;
unsi gned short ip_sum
unsigned int ip_src;
unsigned int ip dst;
unsigned int dataf1];

/* 1 QWP packet header */
typedef struct icnp s {

} icnp;

unsi gned char icnp_type;
unsi gned char icnp_code;
unsi gned short icnp_cksum
unsi gned short icnp_id;
unsi gned short icnp_seq;
unsigned int datal 1];

NSD-Intel -- Chapt. 25 95

2004

Packet Formats Used By The Core (3)

/* TCP packet header */
typedef struct tcp s {
unsi gned short tcp _sport;
unsi gned short tcp dport;
unsigned int tcp seq;
unsi gned int tcp_ack;
unsi gned char tcp of f set;
unsi gned char tcp code;
unsi gned short tcp w ndow
unsi gned short tcp cksum
unsi gned short tcp urgptr;
unsigned int datal 1];

} tep;

/* \DP packet header */
typedef struct udp s {
unsi gned short udp_sport;
unsi gned short udp dport;
unsi gned short udp | en;
unsi gned short udp cksum

} udp;

/* Transmt request structure */
typedef struct tx req s {
unsigned int valid : 1;
unsigned int reserved : 3;
unsigned int port : 4;
unsigned int buff handle : 24;
} iX_tx_req;

NSD-Intel -- Chapt. 25 96

2004

Core Component Packet Handler (1)

/* NAT pkt handler.c - packet handl er and tabl e nanagenent functions */

#i ncl ude <enpv2_types. h>

#include <ix_ rmh> /* Qode uses the | XA Resour ce Manager */
#undef LI NUX /* Prevents the conpiler fromconplaining */
ncl ude <i x_cc. h> /* (ode uses the | XA J */

ncl ude < x_cci.h>

ncl ude "NAT shared defs. h"
#i ncl ude "NAT types. h"

#i ncl ude "NAT net. h"

/* macro to drop a packet and quit packet handl er */
#define drop(arg hBuffer) { ix rmbuffer free(arg hBuffer);\

return | X SIIESS }

/* Verbosity |evel */
extern int verb;

/* Satic gateway | P address */
extern unsigned int gateway ip;

/[* Satic network interface configuration */
extern net_if iface table[];

/* Qobal NAT port */
static unsigned short gl obal nport=0;

/* Scratch rings */
extern ix_hwring handl e rxToNat R ng, txScrR ng[];

NSD-Intel -- Chapt. 25 97

2004

Core Component Packet Handler (2)

[* List of free buffers */
extern ix_buffer free list_handl e hwH eeli st;

/* Pointers to various run-tine data structures */
extern nat_entry *f nat table, *r _nat table;
extern unsigned int *f_index, *r_i ndex;

extern arp entry *arp tabl e;

extern unsigned char *f _tiner, *r_tiner;

/* gl obal procedures */
ix_error nat_pkt handl er (i x_buffer _handl e, i x_ui nt 32, voi d*) ;
i x_error resol ve arp(unsigned int);

/* local procedures */
static void process arp req(arp*,ix_hwbuffer neta*,

I Xx_buffer handl e, et h*);
static void process arp rep(arp*,ix_hw buffer neta*);
static void send icnp echo rep(ip*,icnp*,ix_hw buffer neta*,

I x_buf fer_handl e, et h*);

static int process_icnp(icnp*, nat_entry*);

static int process_udp(udp*, nat_entry*);

static int process tcp(tcp*, nat_entry*);

static char* find arp entry(unsigned int);

staticint add arp entry(arp_entry*);

static int add nat_entry(nat_entry*);

static void add r nat_entry(unsigned int);

static void del nat _entry(unsigned int);

NSD-Intel -- Chapt. 25 98 2004

Core Component Packet Handler (3)

staticint set _newnport(nat_entry*);
static void send pkt(voi d*, unsigned int, eth*,

unsi gned char *, unsigned short);

/* Packet handl er call ed when an exception packet arrives */
ix_error nat_pkt handl er(

I x_buffer_handl e arg_hBuffer,
I X_uint32 arg_UserDat a, /* exception code */
voi d* arg_pQont ext

I Xx_hw buffer neta *neta dat a;

voi d *buf ;

i nt cksum

eth *eth pkt;

arp *arp _pkt;

arp_entry ae;

| p* 1 p_pkt;

I cnp* i cnp_pkt ;

tcp* tcp pkt;

udp* udp_pkt ;

nat_entry ne;

char * gw eth;

Ix_ rmbuffer get data(arg hBuffer, &buf);

IXx_ rmbuffer get neta(arg hBuffer, (void **)&eta data);
eth pkt=(eth*)((int)buf+int)(neta data->mdfset));

NSD-Intel -- Chapt. 25 99

2004

Core Component Packet Handler (4)

iIf (eth pkt->e type = ETHARP) { /* got ARP */

iIf (verb = VERBCED)
printk("Gt ARP packet\n");

arp_pkt=(arp*) (et h_pkt->dat a);

If (arp_pkt->ar_op = ARP_REQ &&

arp pkt->ar tpa =
| face tabl e[neta data->mInput Port].ip addr) {
/* Process ARP request */
process_arp_req(arp pkt, neta dat a,
arg hBuffer, eth pkt);

return | X SUTESS,

} else

iIf (arp pkt->ar_op = ARP REP &
arp pkt->ar tpa =
| face tabl e[neta data->mInput Port].ip addr) {
/* Process an ARP reply */
process _arp _rep(arp _pkt,neta data);

return | X SUXESS
} else drop(arg hBuffer);

}

If (eth pkt->e type != ETHIP)
drop(arg _hBuffer);

/* got |P packet */

I p_pkt=(i p*) (eth _pkt->data);

NSD-Intel -- Chapt. 25 100 2004

Core Component Packet Handler (5)

iIf (verb = VERBCEE) {
printk("Got | P packet\n");
printk("\tIPsrc =%.%.%.%\n", | P2B(ip pkt->p src));
printk("\tIP dst = %.%.%.%\n", | P2B(i p pkt->p dst));
printk("\tprotocol: %\n",ip pkt->ip p);
printk("\tingress port = %\n", neta data->mIlnputPort);

}
/* For sinplicity, the code drops a datagramthat */
/* has | P options */

if (ippkt->iphl >05)
drop(arg hBuffer);
if (ippkt->ipdst =
i face tabl e[neta data->mInput Port].ip addr) {
/* The packet is destined to the NAT box itself */
If (ippkt->ipp=1PT_1QW) { /* got QWP */
i cnp_pkt=(i cnp*) (i p_pkt->data);
if (icnp pkt->icnp type = | QW _EGHO REQ {
/* received ping */
if (verb = VERBCED)
printk("Gt ping for us\n");
/* Send an echo reply */
send i cnp_echo rep(ip pkt,icnp pkt,
net a dat a,
arg hBuffer,eth pkt);
return | X SUXESS,

NSD-Intel -- Chapt. 25 101 2004

Core Component Packet Handler (6)

if (/* Packet not fromthe gateway */

NSD-Intel --

neta data->mlnput Port !'= NAT | FC &&
/* Mnentry is present in ARP table for the gateway */
(gweth =find arp entry(GNIP)) '= NALL) {
/* The packet is an exception because the NAT | ookup */
/* failed, so add a newentry to the NAT tabl e */
ne.valid=0; /* wll be set to 1 later */
ne.prot=i p_pkt->ip p;
ne.ip addr | oc=i p_pkt->i p src;
ne.ip addr _rens p pkt->i p dst;
swtch (ip_pkt->ipp) {
case | PT_I QWP
/* packet is | QWP */
I cnp_pkt =(i cnp*) (i p_pkt ->dat a) ;
i f (process_icnp(icnp pkt,&e) < 0)
drop(arg _hBuffer);
br eak;

case | PT_TCP.
/* received TCP */
tcp _pkt=(tcp*) (i p_pkt->data);
I f (process_tcp(tcp pkt, &e) < 0)
drop(arg _hBuffer);
br eak;

case | PT_LDP.
/* received WP */
udp_pkt =(udp*) (i p_pkt->dat a);
I f (process_udp(udp pkt, &e) < 0)
drop(arg _hBuffer);
br eak;

Chapt. 25 102

2004

NSD-Intel --

Core Component Packet Handler (7)

default: drop(arg_hBuffer);

}
/[* Qeate an ARP entry for this packet in case a reply */
[* cones |ater */

ae.ip_addr=i p _pkt->i p_src;
ae.eth wo=*(int*)eth _pkt->e src;
ae.eth wi=(*(short*)ð pkt->e src[4]);
ae. i fnum= neta data->m/| nput Port;
ae.valid = 1;
/* Lpdate the | P checksum*/
cksum= i p _pkt-> p_sunHi p_pkt->i p_src>>16)
+ (i p_pkt->i p_src&xHFF)
+ ((~ face tabl e NAT | FJ . i p_addr)>>16)
+ ((~face tabl e[NAT | FJ . i p_addr) 8OxH-FF) ;
cksunF(cksun&OxFF) + cksun»>16) ;
cksun¥(cksun&OxFFHF) + cksun»>16) ;
/* Uodate the | P packet */
i p_pkt->ip src = iface tabl efNAT_I K] . i p_addr;
I p_pkt->ip sum:cksumEOXFFFF
[* Transmt the packet */
send _pkt ((voi d*)arg_hBuf fer, NAT | FC et h_pkt,
gweth ETHIP);
/* Add the ARP entry that was created above */
add arp entry(&ae);
return | X SUXESS

}
/* Drop the packet */
drop(arg hBuffer);

Chapt. 25 103

2004

Core Component Packet Handler (8)

/* Function to pass packet to TX mcrobl ock */
static void send pkt(voi d* buf, unsigned int ifnum eth* eth pkt,

{

unsi gned char * eth addr, unsigned short eth type)

I X_tX req txreq;

| X_uint32 txreq size;

/* set ethernet addresses */

(int)eth_pkt->e dst=*(int*)eth _addr;

(short) ((int*)eth pkt->e dst+1)=*(short*)((int*)eth addr+1);
(int)eth pkt->e src=iface tabl e[ifnunj.eth wo;

(short) ((int*)eth pkt->e src+l)=(iface tabl e[ifnun}.eth wi>>16);

eth pkt->e type = eth type;
/* prepare Tx request */
txreg.valid = 1; /* valid request */
t Xr eq. r eser ved=0; /* reserved -- set to zero */
txreq.port =ifnum /* outgoing interface */
txreq. buff _handle = (unsigned int)buf; /* buffer handl e */
txreq_si ze=1,
/* put Tx request on appropriate Tx scratch ring */
Ix_rmhwring_put(txScrRng[txreq. port], & xreq size,

(ix uint32 *)&xreq);

NSD-Intel -- Chapt. 25 104

2004

Core Component Packet Handler (9)

/* ARP | ookup function */
char * find arp _entry(unsigned int ipaddr)

{

| Xx_hash_48 hash48yv;

int i,j;

hash48v. m LV@ = i paddr;

hash48v. m LWL = O;

I Xx_rmhash_48 hash(&ash48v);

] = hash48v. m LVO&ARP TABLE Bl T _MASK

for (i=0;i<ARP TABLE S ZEi ++) {

If (ipaddr == arp table[j].ip addr & arp table[j].valid)
return((char*)&arp table[j].eth wl));
j=(j +1) 8ARP_TABLE Bl T_MASK

}

return NULL;
}
/* Function to resol ve an ARP entry for given | P address (used */
/* to obtain an ARP entry for the gateway) */
ix_error resolve arp(unsigned int ipaddr)
{

char eth bcast[]={Oxff,Oxff, Oxff, Oxff, Oxff, Oxff};
voi d * buf;

eth *eth pkt;

arp *arp pkt;

I x_buffer_handl e hBuffer,

I Xx_hw buffer neta *neta dat a;

int 1;

NSD-Intel -- Chapt. 25 105 2004

Core Component Packet Handler (10)

for (i=0;i <GNMAC RES ATTEWPTS, i ++) {
I x_rmbuffer_all oc(hwF eeli st, &Buffer);
I Xx_rmbuffer get data(hBuffer, (voi d**)&ouf);
I X rmbuffer get neta(hBuffer, (void **)&mweta data);
net a_dat a- >m G f set =0;
net a_dat a- >m Buf f er § ze=60;
net a_dat a- >m Packet S ze=60;
eth pkt=(eth*)((int)buf+(int)neta data->mdfset);
arp_pkt=(arp*) (et h_pkt ->dat a) ;
arp pkt->ar hrd =1; /* Bhernet */

arp _pkt->ar_hin = 6;
arp pkt->ar pro = ETHIP, /* IPv4 */
arp pkt->ar_pln = 4;

arp pkt->ar_op = ARP_REQ
(int)arp_pkt->ar _tha=0;
(short) ((int*)arp pkt->ar_thatl)=0;
arp_pkt->ar_tpa=GNI P,
(int)arp pkt->ar_sha=i face tabl e[NAT | FJ . et h wo;
(short) ((int*)arp_pkt->ar_shatl)=

(iface tabl ¢ NAT | FJ . et h wi>>16);
arp_pkt->ar_spal=

(short)(iface tabl e[NAT I FJ .1 p_addr>>16);
arp_pkt->ar_spa2=

(short) (iface tabl e[NAT | FQ . i p_addr 8&OxF-FF) ;
send pkt ((voi d*)hBuffer, NAT |FC eth pkt,

eth _bcast, ETH ARP);
printk("9%: Resol ving gateway MAC address...\n",

NAT DR VER NAME) ;

NSD-Intel -- Chapt. 25 106 2004

Core Component Packet Handler (11)

I x_ossl _sl eep(500) ;
if (find arp entry(GNIP) = NLLL)
return | X SUXESS
}

return(-1);

}

/* Function to process an ARP request */

voi d process arp req(arp* arp pkt,ix hw buffer neta* neta data,
I x_buffer_handl e arg_hBuffer,eth *eth pkt)

{

arp entry ae;
ae.ip addr = (arp pkt->ar_ spal<<l6)|arp_pkt->ar spaz;
ae.eth w0 = *(int*)arp _pkt->ar_sha;
ae.eth wiL = (*(short*)((int*)arp pkt->ar shatl));
ae. i fnum= neta data->m nput Port;
ae.valid = 1;
arp_pkt->ar _op = ARP_ R,
(int)arp_pkt->ar _tha=*(int*)arp pkt->ar_ sha;
(short) (arp _pkt->ar _that+d)=*(short*)(arp pkt->ar shat4);
arp_pkt->ar _tpa=(arp_pkt->ar_spal<<l6)|arp pkt->ar_spa2;
(int)arp pkt->ar_sha=iface tabl e[neta data->m | nput Port].eth wo;
(short) (arp _pkt->ar _shat+4)=

| face tabl e[neta dat a->m | nput Port] . et h wi>>16;
arp_pkt->ar_spal=iface tabl e[neta_data->m| nput Port]. i p_addr>>16;
arp_pkt->ar spa2=

| face tabl e[neta data->mIlnput Port]. i p_addr 8OXFFF;

NSD-Intel -- Chapt. 25 107 2004

}

Core Component Packet Handler (12)

send pkt ((voi d*)arg hBuffer, neta data->m/l nput Port,
eth pkt, eth pkt->e src, ETH ARP);
if (verb = VERBCED)
printk("Sent ARP reply\n");
/* Aso add an entry into arp table */
iIf ('add arp entry(&ae))
printk("%: ARP table full!", NAT DR VER NAMB);

/* Function to process an ARP reply */
voi d process_arp rep(arp* arp pkt,ix _hw buffer neta* neta data)

{

arp_entry ae;
ae.ip_addr = (arp pkt->ar spal<<l6) | arp_pkt->ar_spaz,
ae.eth w0 = *(int*)arp pkt->ar_sha;
ae.eth wl = *(short*) (arp _pkt->ar _shat4);
ae.i fnum= neta dat a->m| nput Port;
ae.valid = 1;
if ('add arp entry(&ae))
printk("%: ARP table full!", NAT DR VER NAME);

NSD-Intel -- Chapt. 25 108

2004

Core Component Packet Handler (13)

/* Function to insert an entry into the ARP tabl e. */
/* Note: because our code uses a sinplified ARP table in which entries */
/* do not expire, there is no need to check for duplicate entries. */
int add arp entry(arp entry *ae)

{

| Xx_hash_48 hash48yv;
int i,j;
hash48v. m LV@ = ae->i p_addr;
hash48v. m LWL = O;
I Xx_rmhash_48 hash(&ash48v);
] = hash48v. m LVO&ARP TABLE BI T_MASK;
for (i=0;i<ARP TABLE S ZE i ++) {
iIf (ae->p addr == arp table[j].ip addr &
arp table[j].valid)
return(l);
iIf (larp table[j].valid) {
arp_tabl e[j]="ae;
return(l);

}
j =(j +1) 8ARP_TABLE Bl T_MAK

return(0);

NSD-Intel -- Chapt. 25 109

2004

Core Component Packet Handler (14)

/* Function to insert an entry into the NAT table */
int add nat_entry(nat_entry* ne)
{
I Xx_hash 128 hash128yv;
unsi gned char tiner, del tiner;
int i,j,del cand;
hash128v. m LV@ = ne->i p_addr_rem
hash128v. m LWL = ne->i p_addr | oc;
hash128v. m LV2 = (ne->| port <<16) | ne->rport;
hash128v. m LV8 = ne->prot;
I Xx_rmhash 128 hash(&ash128v);
j = (hash128v. m LVO&NAT TABLE Bl T MASK) <<HASH BUKET SH FT;
del cand5;
for (i=0;i<HASH BUXKET S ZE i ++, | ++) {
iIf (f_nat table[j].valid &
ne->ip addr loc = f nat table[j].ip addr | oc &
ne->p addr rem==1f nat _table[j].ip addr remé&
ne->lport = f nat table[j].lport &&
ne->rport = f _nat _table[j].rport &
ne->prot = f nat table[j].prot) {
ne->nport=f nat table[j].nport;
return(l);

NSD-Intel -- Chapt. 25 110 2004

Core Component Packet Handler (15)

if (!'f nat table[j].valid) {
if (set_new nport(ne) < 0)
return(-1);
f nat _tabl e[j]="ne;
add r nat_entry(j);
f nat table[j].valid=l;
return(l);

/* No free slot was found; choose a candi date */
[* for deletion */
tiner=f tiner[j]|r _tiner[f_index[j]];
del tiner =f tiner[del _cand]|r_tiner[f_index[del cand]];
if (tiner <del _tiner ||
(tiner = del _tiner &
f nat table[j].prot!=f nat table[del cand].prot &
(f_nat table[j].prot = IPT_IQW ||
(f_nat table[j].prot = IPT_DP &
f nat table[del cand].prot = IPT_ TP))))
del cand5;

del _nat_entry(del cand);

i f (set_new nport(ne) < 0)
return(-1);

f nat _tabl e[del cand] =*ne;

add r nat_entry(del cand);

f nat tabl e[del cand].valid=l,

return(l);

NSD-Intel -- Chapt. 25 111 2004

Core Component Packet Handler (16)

/* Function to delete an entry fromthe NAT table */
void del _nat_entry(unsigned int entry index)

{

}

f _nat _table[entry index].valid=0;

f _tiner[entry i ndex]=0;

r nat_table[f index[entry index]].valid=0;
r tiner[f_index[entry index]]=0;

/* Function to add an entry to the reverse NAT tabl e */
void add r _nat_entry(unsigned int entry i ndex)

{

| Xx_hash 128 hash128v;

int i, j, k, del _cand, r_del cand;

unsi gned char tiner, del tiner;

nat_entry *ne=& nat table[entry index];
hash128v. m LV@ = ne->i p_addr_rem

hash128v. m LW = (ne->nport <<16) | ne->rport;
hash128v. m LV2 = ne->prot;

hash128v. m LV8 = O;

I Xx_rmhash 128 hash(&ash128v);

] =(hash128v. m LVOSNAT TABLE BI T MASK) <<HASH BUCKET SH FT;
del cand=r_index[j];

r del cand=;

NSD-Intel -- Chapt. 25 112

2004

Core Component Packet Handler (17)

for (i=0;i<HASH BUXKET S ZE i ++, | ++) {

/* Check whether the slot is enpty */

iIf ('r_nat table[j].valid) {
/* we found an enpty slot in reverse NAT table */
r nat table[j]=f nat table[entry index];
f_index[entry i ndex];
r_index[j]=entry_ i ndex;
r nat _table[j].valid=l,;

return;
}
/* And a canditate for del etion */
K =r_index[j];

tiner =f tiner[Kk]|r_tiner[j];
del tiner=f tiner[del cand]|r_tiner[r_del cand];
if (tiner <del tiner ||
(tiner = del _tiner &
f nat _table[k].prot!=f nat table[del cand].prot &
(f_nat table[K].prot = IPT_IQW ||
(f_nat table[k].prot = IPT_LDP &&
f nat table[del cand].prot = IPT. TP)))) {
del _cand=k;
r _del cands;

NSD-Intel -- Chapt. 25 113 2004

}

Core Component Packet Handler (18)

/* This point is reached if no slot is enpty */
del nat entry(del cand);

r nat table[r _del cand]=f nat table[entry index];
r _index[r_del cand] = entry_i ndex;

f _index[entry index] = r_del cand;

r nat _table[r del cand].valid=l;

/* Function to cal culate a val ue for a new NAT port */
int set _new nport(nat_entry* ne)

{

I Xx_hash 128 hash128yv;
int i,j,k;

ne- >npor t =++gl obal _nport;
[* Try at nost NEWNPCRT ATTEMPS val ues, and then give up */
for (i=0;i <NEWNPCRT ATTEIMPS i ++) {
hash128v. m LV@ = ne->i p_addr_rem
hash128v. m LW = (ne- >nport <<16) | ne->rport;
hash128v. m LV2 = ne->prot;
hash128v. m LV8 = O;
I Xx_rmhash 128 hash(&ash128v);

j =(hash128v. m LVOSNAT TABLE Bl T_MASK) <<HASH BUCKET _SH FT;

NSD-Intel -- Chapt. 25 114

2004

Core Component Packet Handler (19)

for (k=0; k<sHASH BUKET S ZE k++, | ++) {
if (r_nat table[j].valid &
r nat table[j].ip addr_rem== ne->i p _addr rem &%
r nat table[j].rport = ne->rport &&

r nat table[j].nport = ne->nport &
r nat_table[j].prot = ne->prot)
br eak;

}

i f (k=HASH BUXKET S ZE)
/* An unused NAT port val ue has been found */
ret urn(ne->nport);

/* try the next NAT port val ue */

ne- >npor t =++gl obal _nport ;

return(-1);

NSD-Intel -- Chapt. 25 115

2004

Core Component Packet Handler (20)

/* Function to send echo response */

voi d send i cnp _echo rep(ip* ip_pkt,icnp* icnp pkt,
I Xx_hw buffer neta* neta data,ix buffer _handl e arg_hBuffer,
eth *eth pkt)

unsi gned int cksum
i cnp_pkt->i cnp_type = | QW_EGHO REP,
cksum = i cnp_pkt - >i cnp_cksunm(| QWP ECHO REQ<8)
+ ((~(1 QWP_BECHO REP<<8)) 8OXFFFF) ;
cksum = (cksun&OxFFFF) +(cksun»>16) ;
cksum = (cksun®OxFFFF) +(cksun»>16) ;
I cnp_pkt - >i crrp_cksum= cksun&®OxFHF;
I p_pkt->ip dst =ip _pkt->ip_src;
Ip pkt->p src = iface tabl e[neta data->mlnputPort].ip addr;
send_pkt ((voi d*)arg hBuf f er, net a_dat a->m | nput Port, eth pkt,
eth pkt->e src, ETHIP);

NSD-Intel -- Chapt. 25 116 2004

Core Component Packet Handler (21)

/* Function to translate | QW packet */
int process_icnp(icnp* icnp_pkt,nat_entry* ne)
{
unsi gned int cksum
/[* 1f this is not an echo request -- drop the packet */
If (icnp_pkt->icnp type !'= 1 QW _EGHO REQ
return(-1);
/* For 1QWP echo request we do IDfield translation */
ne-> port =i cnp_pkt->i cnp_i d;
ne- >r por t =0;
If (add nat_entry(ne) < 0)
return(-1);
| cnp_pkt ->i cnp_i d=ne->nport ;
/* update | QWP checksum */
cksun® i cnp_pkt - > cnp_cksunne- > por t
+ ((~ cnp_pkt->i cnp_i d) 8OXFFFF) ;
cksun¥(cksun&OxFAF) +H cksun»>16) ;
cksun¥(cksun&OxHHF) + cksun»>16) ;
i cnp_pkt - > cnp_cksum = cksun®OxHAHF,
return(l);

NSD-Intel -- Chapt. 25 117 2004

Core Component Packet Handler (22)

/* Function to translate TCP packet */
int process_tcp(tcp* tcp_pkt,nat_entry* ne)
{
unsi gned int cksum
if (verb = VBRBCEE) {
printk("\tTAP source port = %\n", tcp pkt->tcp sport);
printk("\tTCQP dest. port = %\n", tcp pkt->tcp dport);

/* PerformTCP source port translation */

ne->l port=tcp pkt->tcp sport;

ne->rport=tcp_pkt->tcp dport;

If (add nat_entry(ne) < 0)

return(-1);

t cp_pkt - >t cp_sport =ne- >nport ;

/* Uodate the TGP checksum*/

cksum = tcp_pkt->t cp_cksumne- >l port +(ne->i p_addr | oc>>16)
+ (ne->i p_addr | oc&8OxFHF) +((~t cp_pkt - >t cp_sport) 8OxFFFF)
+ ((~face tabl e[NAT | FJ . i p_addr) >>16)
+ ((~face tabl e NAT | FJ . i p_addr) &OxF-F) ;

cksun¥(cksun&OxHHF) + cksun»>16) ;

cksun¥(cksun&OxFAF) +H cksun»>16) ;

tcp_pkt->t cp_cksum = cksun®OxHHF;

return(l);

NSD-Intel -- Chapt. 25 118

2004

Core Component Packet Handler (23)

/* Function to translate WCP packet */
i nt process_udp(udp* udp pkt, nat _entry* ne)

{

unsi gned int cksum

if (verb = VBRBCEE) {
printk("\tUWDP source port = %\n", udp pkt->udp sport);
printk("\tUWDP dest. port = %\n", udp_pkt->udp dport);

/* PerformUDP source port translation */
ne->| port =udp_pkt - >udp_sport;
ne- > por t =udp_pkt - >udp_dport;
If (add nat_entry(ne) < 0)
return(-1);
udp_pkt - >udp _sport =ne->nport ;
/* Uodate the WDP checksum*/
I f (udp_pkt->udp cksunm) {
cksum = udp_pkt - >udp_cksun¥ne- >l port+(ne->i p_addr | oc>>16)
+ (ne->i p_addr | oc&OxFHF)
+ ((~udp_pkt - >udp_spor t) &OxXHFF)
+ ((~ face tabl e NAT | FJ . i p_addr)>>16)
+ ((~ face tabl e NAT | FJ . i p_addr) 8OXFHF) ;
cksun¥(cksun&OxFFHF) + cksun»>16) ;
cksunF(cksun&OxFF) + cksun»>16) ;
udp_pkt - >udp _cksum = cksun&OxFFHF;

return(l);

NSD-Intel -- Chapt. 25 119

2004

User Interface Application

e Allows user to interact with core component
e (Core component

— Deéfines pseudo-device in Linux kernel

— Installs driver for pseudo-device

e To execute a command, user interface performs an opeation
on the pseudo-device

NSD-Intel -- Chapt. 25 120 2004

Code For User Interface (1)

/* NAT control.c -- user interface and control functions for NAT */

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
#i ncl ude

#def i ne
"Usage:

voi d App
{

NSD-Intel

<errno. h>
<fcntl.h>

<uni std. h>
<sys/ioctl.h>
<enpv2_t ypes. h>
<sys/ nman. h>

"NAT_shar ed defs. h"
"NAT _types. h"

USACE \
% [show| clear | silent | arp | nat | verbose J\n", argv[Q]

Show void)
int 1;

U NI32 *pl, *p2;
char buf[1024];

int natfd;

natfd = open(NAT DEV HLE, ORDAR 0);

if (natfd =-1) {
printf("Failed to open 9%\n", NAT DEV F LE);
return;

}

-~ Chapt. 25 121

2004

Code For User Interface (2)

void AppS | ent ()
{

}

int natfd;

natfd = open(NAT DEV HLE, ORDAR 0);

if (natfd =-1) {
printf("Failed to open 9%\n", NAT DEV F LE);
return;

}
loctl (natfd, S LENT, NLLL);
cl ose(natfd);

voi d App\er bose()
{

int natfd;

natfd = open(NAT DEV HLE, ORDAR 0);

if (natfd =-1) {
printf("Failed to open 9%\n", NAT DEV F LE);
return;

}
i octl (natfd, VERBCEE, NLLL) ;
cl ose(natfd);

NSD-Intel -- Chapt. 25 122

2004

Code For User Interface (3)

void AppS | ent ()
{

}

int natfd;

natfd = open(NAT DEV HLE, ORDAR 0);

if (natfd =-1) {
printf("Failed to open 9%\n", NAT DEV F LE);
return;

}
loctl (natfd, S LENT, NLLL);
cl ose(natfd);

voi d App\er bose()
{

int natfd;

natfd = open(NAT DEV HLE, ORDAR 0);

if (natfd =-1) {
printf("Failed to open 9%\n", NAT DEV F LE);
return;

}
i octl (natfd, VERBCEE, NLLL) ;
cl ose(natfd);

NSD-Intel -- Chapt. 25 123

2004

Code For User Interface (4)

void Apopd ear(void)
{

int natfd;

natfd = open(NAT DEV HLE, ORDAR 0);

if (natfd =-1) {
printf("Failed to open 9%\n", NAT DEV F LE);
return;

}

loctl (natfd, AR RX GOUNTER NLL);
loctl (natfd, AR TX GOUNTER NLL);
cl ose(natfd);

printf("CGounters cleared\n");
return;

NSD-Intel -- Chapt. 25 124 2004

Code For User Interface (5)

voi d AppGet ArpThl (void)

{

int natfd,i;

arp entry buf[ARP_TABLE S ZH ;

natfd = open(NAT DEV HLE, ORDAR 0);

if (natfd =-1) {
printf("Failed to open 9%\n", NAT CEV FI LE);
return;

}
loctl (natfd, GET_ARP_TABLE, buf);
cl ose(natfd);
for (i=0;i<ARP TABLE S ZE i ++) {
if (buf[i].valid)
printf(
"%.%.%.% -> %02X %2X 902X 92X %2X 902X iface: %\n",
| P2B(buf[i].ip_addr), ETHB(buf[i].eth w)),
buf [i].1fnun);
}

return;

NSD-Intel -- Chapt. 25 125

2004

Code For User Interface (6)

voi d AppGet Nat Tol (voi d)
{
int natfd,i;
nat _entry buf [NAT TABLE S ZF;
unsi gned char tiner[2*NAT_TABLE S ZF];
natfd = open(NAT DEV HLE, ORDAR 0);
if (natfd =-1) {
printf("Failed to open 9%\n", NAT DEV F LE);
return;

}
loctl (natfd, GET_NAT TABLE, buf);
ioctl (natfd, GET_TI MER TABLE, ti ner);
for (i=0;i<NAT TABLE SIZE i ++) {
if (buf[i].valid) {
printf("IPlocal: %.%.%.% port local: %\n",
| P2B(buf[i].ip addr _loc), buf[i].lport);
printf("IPremte: %.%.%.% port renote: %\n",
| P2B(buf[i].ip addr_rem), buf[i].rport);
printf("protocol: % port (NAT): % tiner: % index: %\n\n",
buf[i].prot, buf[i].nport,
tiner[i]|tiner[NAT. TABLE S ZE+H],1);
}

cl ose(natfd);
return;

NSD-Intel -- Chapt. 25 126 2004

Code For User Interface (7)

int nman(int argc, char **argv)

if (argc !'=2) {
printf(USAE);

return O;

}
if (strncnp(argv[1], "show,

AppShow() ;

else if (strncnp(argv|1],

Appd ear () ;

else if (strncnp(argv|1],

AppSi T ent () ;

else if (strncnp(argv|1],

else if (strncnp(argv|1],

AppGet ArpTbl () ;

else if (strncnp(argv|1],

AppGet Nat Thl () ;
el se {

}
}
i App\er bose() ;
}
}

4 =0 {

“clear", 5 = 0) {

"silent", 6) = 0) {
"verbose", 7) = 0) {
arp’, 3 =0) {

"nat", 3) = 0) {

printf("lInvalid paraneter\n");

printf(USAE);

return O;

NSD-Intel -- Chapt. 25

127

2004

Summary

e Example system implements NAT

e Code uses RX and TX microblocks from Intel’s SDK
e NAT microblock implements NAT in fast path

e Core component handles exceptions

e User interface provides interaction with core component

NSD-Intel -- Chapt. 25 128 2004

Questions?

X

Switching Fabrics

NSD-Intel -- Chapt. 10 1 2004

Physical | nterconnection

e Physical box with backplane
e [ndividua blades plug into backplane slots

e FEach blade contains one or more network connections

NSD-Intel -- Chapt. 10 2 2004

L ogical Interconnection

e Known as switching fabric
e Handles transport from one blade to another

e Becomes bottleneck as number of interfaces scales

NSD-Intel -- Chapt. 10 3 2004

Illustration Of Switching Fabric

input ports

(— 1

CPU

input
arrives <

switching
fabric

output ports

1 f—")

output
s leaves

e Any input port can send to any output port

NSD-Intel -- Chapt. 10

2004

Switching Fabric Properties

e Used inside a single network system

e [nterconnection among |/O ports (and possibly CPU)
e Can transfer unicast, multicast, and broadcast packets
e Scalesto arbitrary data rate on any port

e Scalesto arbitrary packet rate on any port

e Scalesto arbitrary number of ports

e Haslow overhead

e Haslow cost

NSD-Intel -- Chapt. 10 5 2004

Types Of Switching Fabrics

e Space-division (separate paths)

e Time-division (shared medium)

NSD-Intel -- Chapt. 10 6 2004

Space-Division Fabric (separate paths)

interface hardware

: switching fabric
Input ports output ports

s M -
input — 2 2 — output

arrives < — — s |leaves

\—>N4—|: :’—>|\/|—>/

e Can use multiple paths simultaneously

NSD-Intel -- Chapt. 10 7 2004

Space-Division Fabric (separate paths)

input ports \

interface hardware

switching fabric

output ports

- M -
input — 2 2 —»
arrives < —

> N 4—|: :'—> M —)

output
s |leaves

e Can use multiple paths simultaneously

e Still have port contention

NSD-Intel -- Chapt. 10

2004

Desires

NSD-Intel -- Chapt. 10 8 2004

Desires

e High speed

NSD-Intel -- Chapt. 10 8 2004

Desires

e High speed

e | Ow cost

NSD-Intel -- Chapt. 10 8 2004

Desires

e High speed and low cost!

NSD-Intel -- Chapt. 10 8 2004

Possible Compromise

e Separation of physical paths
e | esspardle hardware

e Crossbar design

NSD-Intel -- Chapt. 10 9 2004

Space-Division (Crossbar Fabric)

interface hardware controller

input ports\
switching fabric

Vi
WV

— | 1

Va Y
A\ %
0
VV

active
connection

Va Y
A%

0
A\ %

inactive
connection

V4 Y
V
Vd Y
A\
Vd Y
VV

|
T I 1

output ports 1 2 N M

NSD-Intel -- Chapt 10 10

Crossbar

e Allows simultaneous transfer on digoint pairs of ports

e Can still have port contention

NSD-Intel -- Chapt. 10 11 2004

Crossbar

e Allows simultaneous transfer on digoint pairs of ports

e Can still have port contention

NSD-Intel -- Chapt. 10 11 2004

Solving Contention

e Queues (FIFOs)
— Attached to input
— Attached to output
— At intermediate points

NSD-Intel -- Chapt. 10 12 2004

Crossbar Fabric With Queuing

input ports l

_ controller
Input queues

switching fabric

—_—

1

Y ra
—— = = -

|
T

NSD-Intel -- Chapt. 10

T 7 0

output queues —=

output ports 1 2 .. M

13

2004

Time-Division Fabric (shared bus)

< shared bus

1]

input ports

e Chief advantage: low cost

e Chief disadvantage: low speed

NSD-Intel -- Chapt. 10

14

1

2|...|M

|

|

i,

output ports

b

2004

Time-Division Fabric (shared memory)

memory
interface

controller

input ports \

— 1

shared memory
switching fabric

output ports

1

—=

e May be better than shared bus

e Usually more expensive

NSD-Intel -- Chapt. 10

15

2004

Multi-Stage Fabrics

e Compromise between pure time-division and pure space-
division

e Attempt to combine advantages of each
— Lower cost from time-division

— Higher performance from space-division

e Technique: limited sharing

NSD-Intel -- Chapt. 10 16 2004

Banyan Fabric

e Example of multi-stage fabric
e Features
— Scalable
— Self-routing
— Packet queues allowed, but not required

NSD-Intel -- Chapt. 10 17 2004

Basic Banyan Building Block

input #1 2-input

switch

—_—

—_—

/

input #2

e Address added to front of each packet
e One bit of address used to select output

NSD-Intel -- Chapt. 10 18 2004

4-Input And 8-Input Banyan Switches

4-input switch

00,
SW; SWs | fore
INpULS > outputs
10,
SW, SW, | |rqqe
(a)
8-input switch
'00
SW, '00
4-input switch
(for details
see above) 010"
SW, '011"
INputs ¢
'100"
SW; ‘101"
4-input switch .
(for details
see above) ‘11
SW, '11

NSD-Intel -- Chapt. 10

(b)

19

. outputs

2004

Summary
e Switching fabric provides connections inside single network
system
e Two basic approaches
— Time-division has lowest cost
— Space-division has highest performance
e Multistage designs compromise between two

e Banyan fabric is example of multistage

NSD-Intel -- Chapt. 10 20 2004

Questions?

X1V

|ssues In Scaling A Network Processor

NSD-Intel -- Chapt. 14 1 2004

e (Can we make network processors

Design Questions

Faster?

Easier to use?
More powerful ?
More general ?
Cheaper?

All of the above?

e Scae isfundamental

NSD-Intel -- Chapt. 14

2004

Scaling The Processor Hierarchy

e Make processors faster
e Use more concurrent threads
e |ncrease processor types

e |ncrease numbers of processors

NSD-Intel -- Chapt. 14 3 2004

The Pyramid Of Processor Scale

CPU

/Embedded Proc\

/ I/O Processors \
/ Lower Levels Of Processor Hierarchy \

e | ower levels need the most increase

NSD-Intel -- Chapt. 14 4 2004

Scaling The Memory Hierarchy

e Size

e Speed

e Throughput
e Cost

NSD-Intel -- Chapt. 14 5 2004

Memory Speed

e Access latency
— Raw read/write access speed
— SRAM 2-10ns
— DRAM 50 - 70 ns

— External memory takes order of magnitude longer than
onboard

NSD-Intel -- Chapt. 14 6 2004

Memory Speed
(continued)

e Memory cycle time
— Measure of successive read/write operations
— Important for networking because packets are large

— Read Cycle time (tRC) Is time for successive fetch
operations

— Write Cycle time (tWC) is time for successive store
operations

NSD-Intel -- Chapt. 14 7 2004

The Pyramid Of Memory Scale

Reg.

/ Onboard mem.\

/ External SRAM \
/ External DRAM \

e [argest memory is least expensive

NSD-Intel -- Chapt. 14 8 2004

Memory Bandwidth

e General measure of throughput
e More parallelism in access path yields more throughput
e Cannot scale arbitrarily

— Pinout limits

— Processor must have addresses as wide as bus

NSD-Intel -- Chapt. 14 9 2004

Types Of Memory

Memory Technology

Abbreviation

Purpose

Synchronized DRAM

Quad Data Rate SRAM

Zero Bus Turnaround SRAM
Fast Cycle RAM

Double Data Rate DRAM

Reduced Latency DRAM

NSD-Intel -- Chapt. 14

SDRAM
QDR-SRAM
ZBT-SRAM
FCRAM
DDR-DRAM

RLDRAM

10

Synchronized with CPU
for lower latency

Optimized for low latency
and multiple access

Optimized for random
access

Low cycle time optimized
for block transfer

Optimized for low
latency

Low cycle time and
low power requirements

2004

Memory Cache

e General-purpose technigue

e May not work well in network systems

NSD-Intel -- Chapt. 14 11 2004

Memory Cache

e General-purpose technigue
e May not work well in network systems

— Low temporal locality

NSD-Intel -- Chapt. 14 11 2004

Memory Cache

e General-purpose technigue
e May not work well in network systems
— Low temporal locality

— Large cache size (either more entries or larger
granularity of access)

NSD-Intel -- Chapt. 14 11 2004

Content Addressable Memory (CAM)

e Combination of mechanisms
— Random access storage
— Exact-match pattern search

e Rapid search enabled with parallel hardware

NSD-Intel -- Chapt. 14 12 2004

Arrangement Of CAM

one slot CAl

\

C)

e Organized as array of dots

NSD-Intel -- Chapt. 14 13 2004

L ookup In Conventional CAM

e Given
— Pattern for which to search
— Known as key
e CAM returns
— First dlot that matches key, or
— All dots that match key

NSD-Intel -- Chapt. 14 14 2004

Ternary CAM (T-CAM)

e Allows masking of entries

e (Good for network processor

NSD-Intel -- Chapt. 14 15 2004

T-CAM Lookup

e Each dot has hit mask

e Hardware uses mask to decide which bits to test

e Algorithm

for each dlot do {
If ((key & mask) == (dlot & mask)) {
declare key matches dot;
} else {
declare key does not match slot;

}

NSD-Intel -- Chapt. 14 16

2004

Partial Matching With A T-CAM

key —=| 08 |00 [45| 06 | OO | 50 | 00 | 00

dot#1 —»| 08 | 00 | 45| 06 | 00 | 50 | 00 [02

mask — | ff | ff | ff | ff [ff | ff | OO | OO

dot#2 —» (08 |00 | 45|06 |00 | 35|00 |03

mask — | ff | ff | ff | ff | ff | ff | OO [OO

e Key matches dot #1

NSD-Intel -- Chapt. 14 17 2004

Using A T-CAM For Classification

e Extract values from fields in headers
e [Form values in contiguous string
e Useakey for T-CAM lookup

e Store classification in slot

NSD-Intel -- Chapt. 14 18 2004

Classification Using A T-CAM

storage for key pointer

N A

~

J

J

NSD-Intel -- Chapt. 14

Sl RAM

19 2004

Softwar e Scalability

e Not aways easy
e Many resource constraints
e Difficulty arises from
— Explicit parallelism
— Code optimized by hand

— Pipelines on heterogeneous hardware

NSD-Intel -- Chapt. 14 20

2004

Summary

e Scalability key issue
e Primary subsystems affecting scale
— Processor hierarchy
— Memory hierarchy
e Many memory types available
— SRAM
— SDRAM
— CAM
e T-CAM useful for classification

NSD-Intel -- Chapt. 14 21

2004

Questions?

XV

Examples Of Commercial Network Processors

NSD-Intel -- Chapt. 15 1 2004

Commercial Products

e Emergein late 1990s

e Become popular in early 2000s

e EXxceed thirty vendors by 2003

e Fewer than thirty vendors by 2004

NSD-Intel -- Chapt. 15 2 2004

Examples

e Chosen to
— Illustrate concepts
— Show broad categories
— Expose the variety
e Not necessarily ‘‘best’”
e Not meant as an endorsement of specific vendors

e Show a snapshot as of 2004

NSD-Intel -- Chapt. 15 3 2004

Short Pipeline Of Unconventional
Processors (Agere)

e Two-stage pipeline

— Classification

— Forwarding (traffic management)
e Unusual, special-purpose processors

— Classification uses programmable pattern matching
engine

— Traffic manager uses programmable queue selection
mechanism

e Modd is APP550

NSD-Intel -- Chapt. 15 4 2004

Agere Architecture

APP550
Forwarding:
Classification: traffic manager out
pattern processor and
packet modifier

I

State Engine:
statistics and
host communication

NSD-Intel -- Chapt. 15

2004

L anguages Used By Agere

e FPL
— Functional Programming Language
— Produces code for FPP
— Non-procedural

e CNP
— C for Network Processors
— Produces code for engines on chip

— Similar to shell scripts

NSD-Intel -- Chapt. 15 6 2004

Architecture Of Agere’'s APP550 chip

classif. buffer schedul. buffer SED memory
(FCRAM) (FCRAM) (FCRAM)
Ingress A A A | 4 3 APP550 Egress
GMII, GMII,
SMIl, ——-» = SMII,
PMA PMA
) Input Output)
lJStEI ?a — s Inter- PDU Stream Inter- > Sfol 3|a
P face ™| Assembler Editor ™ face P
[l
copirr(])gﬁfsor coprocessor
output
(SPI-3) (SPI-3)
_ Pattern Reorder Buffer
classif. Processing f—— and ?nnebr;)g{d
(@ggg% <T— Engine Traffic Shaper y
State PCI bus
Engine ™ interface
! ! !
Y
statistics memory scheduler memory
(DDR-SRAM) (DDR-SRAM)

NSD-Intel -- Chapt. 15 7 2004

Processors On Agere's APP550

Engine Purpose
Pattern Processing Engine Classification
State Engine Gathering state information for scheduling

and verifying flow is within bounds

Reorder Buffer Manager Ensure packet order
PDU Assembler Collect all blocks of a frame
Traffic Manager Schedule packets and shape traffic flow
Stream EDitor (SED) Modify outgoing packet

NSD-Intel -- Chapt. 15 8 2004

Augmented RISC (Alchemy)

e Based on MIPS-32 CPU
— Five-stage pipeline

e Augmented for packet processing
— Instructions (e.g. multiply-and-accumulate)
— Memory cache

— 1/0O Interfaces

NSD-Intel -- Chapt. 15 9 2004

Alchemy Architecture

output

packets in SDRAM SSRAM
[} [} [}
input _
input packet stream output
interface assembler editor interface
config. Transmit Queue Logic
inter-
e gueue traffic traffic
-— manager manager shaper
logic engine engine
v v \j \J
ext. sched. ext. sched. ext. queue ext. linked
SSRAM interface entry SSRAM list SSRAM

NSD-Intel -- Chapt. 15

10

2004

Parallel Embedded Processors
Plus Coprocessors (AMCC)

e Oneto six nP core processors
e Various engines

— Packet metering

— Packet transform

— Packet policy

NSD-Intel -- Chapt. 15 11 2004

AM CC Architecture

NSD-Intel -- Chapt. 15

A A A
external search | external memory host
interface interface interface
policy metering
engine engine
memory access unit
nPSclc))(res onboard
memory
input packet transform engine output
control iface | debug port inter mod. test iface
v v v v
12

2004

Parallel Pipelines Of
Homogeneous Processor s
(Cisco)
e Parallel eXpress Forwarding (PXF)
e Arranged in parallel pipelines
e Packet flows through one pipeline
e Each processor in pipeline dedicated to one task

NSD-Intel -- Chapt. 15 13 2004

NSD-Intel -- Chapt. 15

Cisco Architecture

I T T
I T T
I T T
I T T
I T T
T N T
I T T

14

MAC classify

Accounting & ICMP

FIB & Netflow

MPLS classify

Access Control

CAR

MLPPP

WRED

2004

Pipeline Of Parallel Heter ogeneous
Processors (EZchip)

e [our processor types

e Each type optimized for specific task

NSD-Intel -- Chapt. 15 15 2004

EZchip NP-1c Architecture

NSD-Intel -- Chapt. 15

TOPparse TOPsearch TOPresolve TOPmodify
memory memory memory memory

Y

EZchip Processor Types

Processor Type

Optimized For

TOPparse
TOPsearch
TOPresolve
TOPmodify

NSD-Intel -- Chapt. 15

Header field extraction and classification
Table lookup

Queue management and forwarding
Packet header and content modification

17

2004

Extensive And Diver se Processors
(Hifn, formerly IBM)

e Multiple processor types

e Extensive use of parallelism

e Separate ingress and egress processing paths
e Multiple onboard data stores

e Modd is NPAGS3

NSD-Intel -- Chapt. 15 18 2004

Hifn NP4AGS3 Architecture

to switching PClI external DRAM from switching
fabric bus and SRAM fabric
)))
- ingress - egress
mggf[aass ~switch 'gts'&nl\ﬁl ~switch eggﬁgs
e interface interface -
. Y. ;
' Embedded Processor Complex !
SRAM ' (EPC) ' traffic
~ for : : manag.
mgress L - and
ata sched.
ingress I egress I
physical physical
MAC MAC
multiplexor multiplexor
| |
| |
| |
v v
packets from packets to egress
physical devices physical devices data store

NSD-Intel -- Chapt. 15 19

2004

Hifn’s Embedded Processor Complex

to onboarg memory

r

A}

to external memory

ingress

Ho| [Hi||H2

Hs

H,

s|[p,||D,||D,

D3

D,

control memory arbiter

queue ~

interrupts

excepti ons

ingress

debug & inter.

completion unit

_ egress

hardware regs.

inter. bus control

i

data
store

ingress

ingress
data
iface

* queue

~ PCl

instr. memory

™ bus

egress
» data

" embed.
PowerPC
programmable
protocol processors
(16 picoengines)

egress

data

iface

classifier assist bus arbiter

store

_internal

data
store

frame dispatch

™ bus

egress

NSD-Intel -- Chapt. 15

20

data
store

2004

Packet Engines

e [Found in Embedded Processor Complex
e Programmable

e Handle many packet processing tasks

e QOperate in parallel (sixteen)

e Known as picoengines

NSD-Intel -- Chapt. 15 21 2004

Other Processors On The IBM Chip

Coprocessor Purpose

Data Store Provides frame buffer DMA

Checksum Calculates or verifies header checksums

Enqueue Passes outgoing frames to switch or target queues
Interface Provides access to internal registers and memory
String Copy Transfers internal bulk data at high speed

Counter Updates counters used in protocol processing
Policy Manages traffic

Semaphore Coordinates and synchronizes threads

NSD-Intel -- Chapt. 15 22

2004

Flexible RISC Plus Coprocessors
(Motorola C-PORT)

e Onboard processors can be
— Dedicated
— Pardld clusters
— Pipeline

NSD-Intel -- Chapt. 15 23 2004

C-Port Architecture

switching

SRAM fabric SRAM PCl bus serial PROM DRAM

f ! ! N f

| v v | | | |
queue e table . buffer
mgmt. |— T lookup pCl Ser. | |prom mgmt.
unit proc. unit unit

Exec. Processor

|

|

|

|

|

multiple onboard buses

clusters

/

\

HEN

)

}

}

!

}

CP-0 CP-1 CP-2 CP-3 CP-12| |CP-13| |CP-14([CP-15
| | | | | | | |
v v | v v | v v
N J

NSD-Intel -- Chapt. 15

~

24

connections multiplexed
to physical interfaces

|nternal Structure Of A
C-Port Channel Processor

To external DRAM
[}

y
< memory bus >

RISC Processor

T

extract merge
space space
Serial Data Serial Data
Processor Processor
(@in) (out)
Y
packets arrive packets leave

e Actually a processor complex

NSD-Intel -- Chapt. 15 25 2004

Extremely Long Pipeline (Xelerated)

e Pipeline contains 200 processors
e Each processor can execute four instructions per packet

e External coprocessor calls used to pass state

NSD-Intel -- Chapt. 15 26 2004

Xelerated Architecture

packet acket
arrives eaves

_ J
Y

200 processors

Y

e Pipeline has 200 stages

NSD-Intel -- Chapt. 15 27 2004

Xeerated Internal Architecture

external SRAM, DRAM, TCAM or coprocessors

A
- N

!

!

!

!

lookaside
engine 0

lookaside
engine 1

lookaside
engine 2

lookaside
engine 3

hash
engine

metering
engine

counter
engine

TCAM
engine

channel multiplexor

(™S [N N I N)

inputs <

linear array of processors
(long pipeline)

to CPU

> outputs

NSD-Intel -- Chapt. 15

28

2004

Summary

e Many network processor architecture variations
e Examplesinclude
— Augmented RISC processor
— Embedded parallel processors plus coprocessors
— Parallel pipelines of homogeneous processors
— Pipeline of parallel heterogeneous processors
— Extensive and diverse processors
— FHexible RISC plus coprocessors

— Extremely long pipeline

NSD-Intel -- Chapt. 15 29 2004

Questions?

XVII

Design Tradeoffs And Consequences

NSD-Intel -- Chapt. 16 1 2004

L ow Development Cost
Vs.
Performance

e The fundamental economic motivation
e ASIC costs $1M to develop

e Network processor costs programmer time

NSD-Intel -- Chapt. 16 2 2004

Programmability
Vs.
Processing Speed

e Programmable hardware is slower

e FHexibility costs...

NSD-Intel -- Chapt. 16 3 2004

Speed
Vs.
Functionality

e Gengic idea
— Processor with most functionality is slowest

— Adding functionality to NP lowers its overall ‘‘ speed’”

NSD-Intel -- Chapt. 16 4 2004

Speed

e Difficult to define
e Caninclude
— Packet Rate
— Data Rate

— Burst size

NSD-Intel -- Chapt. 16 5 2004

Per -l nterface Rates
Vs.
Aggregate Rates

e Per-interface rate important if

— Physical connections form bottleneck

— System scales by having faster interfaces
e Aggregate rate important if

— Fabric forms bottleneck

— System scales by having more interfaces

NSD-Intel -- Chapt. 16 6 2004

| ncreasing Processing Speed
Vs.
| ncreasing Bandwidth

Will network processor capabilities or the bandwidth of
network connections increase more rapidly?

e \What is the effect of more transistors?

e DoesMoore's Law apply to bandwidth?

NSD-Intel -- Chapt. 16 7 2004

L ookaside Coprocessors
Vs.
Flow-Through Coprocessors

e How-through pipeline
— Operates at wire speed
— Difficult to change
e | ookaside
— Modular and easy to change

— Invocation can be bottleneck

NSD-Intel -- Chapt. 16 8 2004

Uniform Pipeline
Vs.
Synchronized Pipeline

e Uniform pipeline

— Operates in lock-step like assembly line

— Each stage must finish in exactly the same time
e Synchronized pipeline

— Buffers allow computation at each stage to differ

— Synchronization expensive

NSD-Intel -- Chapt. 16 9 2004

Explicit Parallelism
Vs.
Cost And Programmability

e Explicit parallelism
— Hardware is less complex
— More difficult to program
e |mplicit parallelism
— Easier to program

— Slightly lower performance

NSD-Intel -- Chapt. 16 10 2004

Parallelism
Vs.
Strict Packet Ordering

e |ncreased parallelism

— Improves performance

— Results in out-of-order packets
e Strict packet ordering

— Aids protocols such as TCP

— Can nullify use of parallelism

NSD-Intel -- Chapt. 16 11 2004

Stateful Classification
Vs.
High-Speed Parallel Classification

e Static classification
— Keeps no state
— |sthe fastest

e Dynamic classification
— Kegps state

— Requires synchronization for updates

NSD-Intel -- Chapt. 16 12 2004

Memory Speed
Vs.
Programmability

e Separate memory banks
— Allow parallel accesses
— Yield high performance
— Difficult to program

e Non-banked memory
— Easier to program

— Lower performance

NSD-Intel -- Chapt. 16 13 2004

| /O Performance
Vs.
Pin Count

e Buswidth
— Increase to produce higher throughput

— Decrease to take fewer pins

NSD-Intel -- Chapt. 16 14 2004

Programming L anguages

e A three-way tradeoff

e (Can have two, but not three of
— Ease of programming
— Functionality

— Performance

NSD-Intel -- Chapt. 16 15 2004

Programming Languages T hat
Offer High Functionality

e Ease of programming vs. speed

— High-level language offers ease of programming, but
lower performance

— Low-level language offers higher performance, but
makes programming more difficult

NSD-Intel -- Chapt. 16 16 2004

Programming Languages T hat
Offer Ease Of Programming

e Speed vs. functionality

— For restricted language, compiler can generate optimized
code

— Broad functionality and ease of programming lead to
Inefficient code

NSD-Intel -- Chapt. 16 17 2004

Programming Languages T hat
Offer High Performance

e Ease of programming vs. functionality

— Optimizing compiler and ease of programming imply a
restricted application

— Optimizing code for general applications requires more
programmer effort

NSD-Intel -- Chapt. 16 18 2004

Multithreading:
Throughput
Vs.
Ease Of Programming

e Multiple threads of control can increase throughput

e Planning the operation of threads that exhibit less contention
requires more programmer effort

NSD-Intel -- Chapt. 16 19 2004

Traffic Management
Vs.
High-Speed Forwarding

e Traffic management
— Can manage traffic on multiple, independent flows
— Requires extra processing

e Blind forwarding
— Performed at highest speed

— Does not distinguish among flows

NSD-Intel -- Chapt. 16 20 2004

Generality
Vs.
Specific Architectural Role

e General-purpose network processor
— Used in any part of any system
— Used with any protocol
— More expensive

e Special-purpose network processor
— Restricted to one role/ protocol

— Less expensive, but may need many types

NSD-Intel -- Chapt. 16 21 2004

Special-Purpose Memory
Vs.
General-Purpose Memory

e General-purpose memory
— Single type of memory serves all needs
— May not be optimal for any use

e Special-purpose memory
— Optimized for one use

— May reguire multiple memory types

NSD-Intel -- Chapt. 16 22

2004

Backward Compatibility
Vs.
Architectural Advances

e Backward compatibility

— Keeps same instruction set through multiple versions
— May not provide maximal performance

e Architectural advances
— Allows more optimizations

— Difficult for programmers

NSD-Intel -- Chapt. 16 23 2004

Parallelism
Vs.
Pipelining
e Both are fundamental performance techniques
e Usualy used in combination: pipeline of parallel processors
— How long is pipeline?

— How much parallelism at each stage?

NSD-Intel -- Chapt. 16 24 2004

Summary

e Many design tradeoffs

e NO easy answers

NSD-Intel -- Chapt. 16 25 2004

Questions?

