
Network Systems Design
(Intel IXP2xxx)

Douglas Comer

Computer Science Department
Purdue University

250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

 Copyright 2004. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

Copy permission: these materials are copyright 2004 by Pearson Education and

Douglas Comer, and may not be reproduced by any means without written

permission from the author or the publisher. Permission is granted to use the

materials in any course for which Comer’s text Network Systems Design Using

Network Processors is a required textbook. In addition to use for in-class

presentation, each student who purchases a copy of the textbook is authorized to

receive an electronic or paper copy. For permission to use the materials in any way

other than the above, contact the author or the publisher.

I

Course Introduction
And Overview

NSD-Intel -- Chapt. 1 1 2004

Topic And Scope

The concepts, principles, and technologies that underlie the
design of hardware and software systems used in computer
networks and the Internet, focusing on the emerging field of
network processors.

NSD-Intel -- Chapt. 1 3 2004

You Will Learn

d Review of

– Network systems

– Protocols and protocol processing tasks

d Hardware architectures for protocol processing

d Software-based network systems and software architectures

d Classification

– Concept

– Software and hardware implementations

d Switching fabrics

NSD-Intel -- Chapt. 1 4 2004

You Will Learn
(continued)

d Network processors: definition, architectures, and use

d Design tradeoffs and consequences

d Survey of commercial network processors

d Details of one example network processor

– Architecture and instruction set(s)

– Programming model and program optimization

– Cross-development environment

NSD-Intel -- Chapt. 1 5 2004

What You Will NOT Learn

d EE details

– VLSI technology and design rules

– Chip interfaces: ICs and pin-outs

– Waveforms, timing, or voltage

– How to wire wrap or solder

d Economic details

– Comprehensive list of vendors and commercial products

– Price points

NSD-Intel -- Chapt. 1 6 2004

Background Required

d Basic knowledge of

– Network and Internet protocols

– Packet headers

d Basic understanding of hardware architecture

– Registers

– Memory organization

– Typical instruction set

d Willingness to use an assembly language

NSD-Intel -- Chapt. 1 7 2004

Schedule Of Topics

d Quick review of basic networking

d Protocol processing tasks and classification

d Software-based systems using conventional hardware

d Special-purpose hardware for high speed

d Motivation and role of network processors

d Network processor architectures

NSD-Intel -- Chapt. 1 8 2004

Schedule Of Topics
(continued)

d An example network processor technology in detail

– Hardware architecture and parallelism

– Programming model

– Testbed architecture and features

d Design tradeoffs

d Scaling a network processor

d Survey of network processor architectures

NSD-Intel -- Chapt. 1 9 2004

Course Administration

d Textbook

– D. Comer, Network Systems Design Using Network
Processors, Intel IXP2xxx version, Prentice Hall, 2005.

d Grade

– Quizzes 5%

– Midterm and final exam 35%

– Programming projects 60%

NSD-Intel -- Chapt. 1 10 2004

Lab Facilities Available

d Extensive network processor testbed facilities

d Donations from

– Agere Systems

– IBM (now sold to Hifn)

– Intel

d Includes hardware and cross-development software

NSD-Intel -- Chapt. 1 11 2004

What You Will Do In The Lab

d Write and compile software for an NP

d Download software into an NP

d Monitor the NP as it runs

d Interconnect Ethernet ports on an NP board

– To other ports on other NP boards

– To other computers in the lab

d Send Ethernet traffic to the NP

d Receive Ethernet traffic from the NP

NSD-Intel -- Chapt. 1 12 2004

Example Programming Projects

d A packet analyzer

– IP datagrams

– TCP segments

d An Ethernet bridge

d An IP fragmenter

d A classification program

d A bump-in-the-wire system using low-level packet
processors

NSD-Intel -- Chapt. 1 13 2004

Questions?

A QUICK OVERVIEW

OF NETWORK PROCESSORS

NSD-Intel -- Chapt. 1 15 2004

The Network Systems Problem

d Data rates keep increasing

d Protocols and applications keep evolving

d System design is expensive

d System implementation and testing take too long

d Systems often contain errors

d Special-purpose hardware designed for one system cannot
be reused

NSD-Intel -- Chapt. 1 16 2004

The Challenge

Find ways to improve the design and manufacture of
complex networking systems.

NSD-Intel -- Chapt. 1 17 2004

The Big Questions

d What systems?

– Everything we have now

– New devices not yet designed

d What physical communication mechanisms?

– Everything we have now

– New communication systems not yet
designed / standardized

d What speeds?

– Everything we have now

– New speeds much faster than those in use

NSD-Intel -- Chapt. 1 18 2004

More Big Questions

d What protocols?

– Everything we have now

– New protocols not yet designed / standardized

d What applications?

– Everything we have now

– New applications not yet designed / standardized

NSD-Intel -- Chapt. 1 19 2004

The Challenge
(restated)

Find flexible, general technologies that enable rapid,
low-cost design and manufacture of a variety of scalable,
robust, efficient network systems that run a variety of
existing and new protocols, perform a variety of existing and
new functions for a variety of existing and new, higher-speed
networks to support a variety of existing and new
applications.

NSD-Intel -- Chapt. 1 20 2004

Special Difficulties

d Ambitious goal

d Vague problem statement

d Problem is evolving with the solution

d Pressure from

– Changing infrastructure

– Changing applications

NSD-Intel -- Chapt. 1 21 2004

Desiderata

d High speed

d Flexible and extensible to accommodate

– Arbitrary protocols

– Arbitrary applications

– Arbitrary physical layer

d Low cost

NSD-Intel -- Chapt. 1 22 2004

Desiderata

d High speed

d Flexible and extensible to accommodate

– Arbitrary protocols

– Arbitrary applications

– Arbitrary physical layer

d Low cost

NSD-Intel -- Chapt. 1 22 2004

Statement Of Hope
(1995 version)

If there is hope, it lies in ASIC designers.

NSD-Intel -- Chapt. 1 23 2004

Statement Of Hope
(1999 version)

If there is hope, it lies in ASIC designers.

???

NSD-Intel -- Chapt. 1 23 2004

Statement Of Hope
(2004 version)

If there is hope, it lies in ASIC designers.

programmers!

NSD-Intel -- Chapt. 1 23 2004

Programmability

d Key to low-cost hardware for next generation network
systems

d More flexibility than ASIC designs

d Easier / faster to update than ASIC designs

d Less expensive to develop than ASIC designs

d What we need: a programmable device with more capability
than a conventional CPU

NSD-Intel -- Chapt. 1 24 2004

The Idea In A Nutshell

d Devise new hardware building blocks

d Make them programmable

d Include support for protocol processing and I/O

– General-purpose processor(s) for control tasks

– Special-purpose processor(s) for packet processing and
table lookup

d Include functional units for tasks such as checksum
computation

d Integrate as much as possible onto one chip

d Call the result a network processor

NSD-Intel -- Chapt. 1 25 2004

The Rest Of The Course

d We will

– Examine the general problem being solved

– Survey some approaches vendors have taken

– Explore possible architectures

– Study example technologies

– Consider how to implement systems using network
processors

NSD-Intel -- Chapt. 1 26 2004

Disclaimer #1

In the field of network processors, I am a tyro.

NSD-Intel -- Chapt. 1 27 2004

Definition

Tyro \Ty’ro\, n.; pl. Tyros. A beginner in learning; one who is in
the rudiments of any branch of study; a person imperfectly
acquainted with a subject; a novice.

NSD-Intel -- Chapt. 1 28 2004

By Definition

In the field of network processors, you are all tyros.

NSD-Intel -- Chapt. 1 29 2004

In Our Defense

When it comes to network processors, everyone is a tyro.

NSD-Intel -- Chapt. 1 30 2004

Questions?

II

Basic Terminology And Example Systems
(A Quick Review)

NSD-Intel -- Chapt. 2 1 2004

Packets Cells And Frames

d Packet

– Generic term

– Small unit of data being transferred

– Travels independently

– Upper and lower bounds on size

NSD-Intel -- Chapt. 2 2 2004

Packets Cells And Frames
(continued)

d Cell

– Fixed-size packet (e.g., ATM)

d Frame or layer-2 packet

– Packet understood by hardware

d IP datagram

– Internet packet

NSD-Intel -- Chapt. 2 3 2004

Types Of Networks

d Paradigm

– Connectionless

– Connection-oriented

d Access type

– Shared (i.e., multiaccess)

– Point-To-Point

NSD-Intel -- Chapt. 2 4 2004

Connection-Oriented Networks

d Telephone paradigm (connection, use, disconnect)

d Examples

– Frame Relay

– Asynchronous Transfer Mode (ATM)

NSD-Intel -- Chapt. 2 5 2004

Point-To-Point Network

d Connects exactly two systems

d Often used for long distance

d Example: data circuit connecting two routers

NSD-Intel -- Chapt. 2 6 2004

Data Circuit

d Leased from phone company

d Also called serial line because data is transmitted bit-
serially

d Originally designed to carry digital voice

d Cost depends on speed and distance

d T-series standards define low speeds (e.g. T1)

d STS and OC standards define high speeds

NSD-Intel -- Chapt. 2 7 2004

Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits222

– 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2,488.320 Mbps 38880
OC-192 9,953.280 Mbps 155520
OC-768 39,813.120 Mbps 622080

NSD-Intel -- Chapt. 2 8 2004

Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits222

– 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2,488.320 Mbps 38880
OC-192 9,953.280 Mbps 155520
OC-768 39,813.120 Mbps 622080

d Holy grail of networking: devices capable of accepting and
forwarding data at 10 Gbps (OC-192).

NSD-Intel -- Chapt. 2 8 2004

Local Area Networks

d Ethernet technology dominates

d Layer 1 standards

– Media and wiring

– Signaling

– Handled by dedicated interface chips

– Unimportant to us

d Layer 2 standards

– MAC framing and addressing

NSD-Intel -- Chapt. 2 9 2004

MAC Addressing

d Three address types

– Unicast (single computer)

– Broadcast (all computers in broadcast domain)

– Multicast (some computers in broadcast domain)

NSD-Intel -- Chapt. 2 10 2004

More Terminology

d Internet

– Interconnection of multiple networks

– Allows heterogeneity of underlying networks

d Network scope

– Local Area Network (LAN) covers limited distance

– Wide Area Network (WAN) covers arbitrary distance

NSD-Intel -- Chapt. 2 11 2004

Network System

d Individual hardware component

d Serves as fundamental building block

d Used in networks and internets

d May contain processor and software

d Operates at one or more layers of the protocol stack

NSD-Intel -- Chapt. 2 12 2004

Example Network Systems

d Layer 2

– Bridge

– Ethernet switch

– VLAN switch

NSD-Intel -- Chapt. 2 13 2004

VLAN Switch

d Similar to conventional layer 2 switch

– Connects multiple computers

– Forwards frames among them

– Each computer has unique unicast address

d Differs from conventional layer 2 switch

– Allows manager to configure broadcast domains

d Broadcast domain known as virtual network

NSD-Intel -- Chapt. 2 14 2004

Broadcast Domain

d Determines propagation of broadcast / multicast

d Originally corresponded to fixed hardware

– One per cable segment

– One per hub or switch

d Now configurable via VLAN switch

– Manager assigns ports to VLANs

NSD-Intel -- Chapt. 2 15 2004

Example Network Systems
(continued)

d Layer 3

– Internet host computer

– IP router (layer 3 switch)

d Layer 4

– Basic Network Address Translator (NAT)

– Round-robin Web load balancer

– TCP terminator

NSD-Intel -- Chapt. 2 16 2004

Example Network Systems
(continued)

d Layer 5

– Firewall

– Intrusion Detection System (IDS)

– Virtual Private Network (VPN)

– Softswitch running SIP

– Application gateway

– TCP splicer (also known as NAPT — Network Address
and Protocol Translator)

– Smart Web load balancer

– Set-top box
NSD-Intel -- Chapt. 2 17 2004

Example Network Systems
(continued)

d Network control systems

– Packet / flow analyzer

– Traffic monitor

– Traffic policer

– Traffic shaper

NSD-Intel -- Chapt. 2 18 2004

Questions?

III

Review Of Protocols And Packet Formats

NSD-Intel -- Chapt. 3 1 2004

Protocol Layering

Application

Transport

Internet

Network Interface

Physical Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

d Five-layer Internet reference model

d Multiple protocols can occur at each layer

NSD-Intel -- Chapt. 3 2 2004

Layer 2 Protocols

d Two protocols are important

– Ethernet (widely used)

– ATM (defines per-flow QoS)

d We will concentrate on Ethernet

NSD-Intel -- Chapt. 3 3 2004

Ethernet Addressing

d 48-bit addressing

d Unique address assigned to each station (NIC)

d Destination address in each packet can specify delivery to

– A single computer (unicast)

– All computers in broadcast domain (broadcast)

– Some computers in broadcast domain (multicast)

NSD-Intel -- Chapt. 3 4 2004

Ethernet Addressing
(continued)

d Broadcast address is all 1s

d Single bit determines whether remaining addresses are
unicast or multicast

x x x x x x xm x

multicast bit

d Multicast bit travels first on the wire

NSD-Intel -- Chapt. 3 5 2004

Ethernet Frame Processing

6 6 2 46 - 1500

Dest.
Address

Source
Address

Frame
Type Data In Frame

Header Payload

d Dedicated physical layer hardware

– Checks and removes preamble and CRC on input

– Computes and appends CRC and preamble on output

d Layer 2 systems use source, destination and (possibly) type
fields

NSD-Intel -- Chapt. 3 6 2004

Internet

d Set of (heterogeneous) computer networks interconnected by
IP routers

d End-user computers, called hosts, each attach to specific
network

d Protocol software

– Runs on both hosts and routers

– Provides illusion of homogeneity

NSD-Intel -- Chapt. 3 7 2004

Internet Protocols Of Interest

d Layer 2

– Address Resolution Protocol (ARP)

d Layer 3

– Internet Protocol (IP)

d Layer 4

– User Datagram Protocol (UDP)

– Transmission Control Protocol (TCP)

NSD-Intel -- Chapt. 3 8 2004

IP Datagram Format

0 4 8 16 19 24 31

VERS HLEN SERVICE TOTAL LENGTH

ID FLAGS F. OFFSET

TTL TYPE HDR CHECKSUM

SOURCE

DESTINATION

IP OPTIONS (MAY BE OMITTED) PADDING

BEGINNING OF PAYLOAD
...

d Format of each packet sent across Internet

d Fixed-size fields make parsing efficient

NSD-Intel -- Chapt. 3 9 2004

IP Datagram Fields

Field Meaning222

VERS Version number of IP being used (4)
HLEN Header length measured in 32-bit units
SERVICE Level of service desired
TOTAL LENGTH Datagram length in octets including header
ID Unique value for this datagram
FLAGS Bits to control fragmentation
F. OFFSET Position of fragment in original datagram
TTL Time to live (hop countdown)
TYPE Contents of payload area
HDR CHECKSUM One’s-complement checksum over header
SOURCE IP address of original sender
DESTINATION IP address of ultimate destination
IP OPTIONS Special handling parameters
PADDING To make options a 32-bit multiple

NSD-Intel -- Chapt. 3 10 2004

IP addressing

d 32-bit Internet address assigned to each computer

d Virtual, hardware independent value

d Prefix identifies network; suffix identifies host

d Network systems use an address mask to specify the
boundary between prefix and suffix

NSD-Intel -- Chapt. 3 11 2004

Next-Hop Forwarding

d Routing table

– Found in both hosts and routers

– Stores (destination, mask, next_hop) tuples

d Route lookup

– Takes destination address as argument

– Finds next hop

– Uses longest-prefix match

NSD-Intel -- Chapt. 3 12 2004

Next-Hop Forwarding

d Routing table

– Found in both hosts and routers

– Stores (destination, mask, next_hop) tuples

d Route lookup

– Takes destination address as argument

– Finds next hop

– Uses longest-prefix match

NSD-Intel -- Chapt. 3 12 2004

UDP Datagram Format

0 16 31

SOURCE PORT DESTINATION PORT

MESSAGE LENGTH CHECKSUM

BEGINNING OF PAYLOAD
.
.
.

Field Meaning22

SOURCE PORT ID of sending application
DESTINATION PORT ID of receiving application
MESSAGE LENGTH Length of datagram including the header
CHECKSUM One’s-complement checksum over entire datagram

NSD-Intel -- Chapt. 3 13 2004

TCP Segment Format

0 4 10 16 24 31

SOURCE PORT DESTINATION PORT

SEQUENCE

ACKNOWLEDGEMENT

HLEN NOT USED CODE BITS WINDOW

CHECKSUM URGENT PTR

OPTIONS (MAY BE OMITTED) PADDING

BEGINNING OF PAYLOAD
...

d Sent end-to-end

d Fixed-size fields make parsing efficient

NSD-Intel -- Chapt. 3 14 2004

TCP Segment Fields

Field Meaning222

SOURCE PORT ID of sending application
DESTINATION PORT ID of receiving application
SEQUENCE Sequence number for data in payload
ACKNOWLEDGEMENT Acknowledgement of data received
HLEN Header length measured in 32-bit units
NOT USED Currently unassigned
CODE BITS URGENT, ACK, PUSH, RESET, SYN, FIN
WINDOW Receiver’s buffer size for additional data
CHECKSUM One’s-complement checksum over entire segment
URGENT PTR Pointer to urgent data in segment
OPTIONS Special handling
PADDING To make options a 32-bit multiple

NSD-Intel -- Chapt. 3 15 2004

Illustration Of Encapsulation

ETHERNET HDR. ETHERNET PAYLOAD

IP HEADER IP PAYLOAD

UDP HEADER UDP PAYLOAD

d Field in each header specifies type of encapsulated packet

NSD-Intel -- Chapt. 3 16 2004

Example ARP Packet Format

0 8 16 24 31

ETHERNET ADDRESS TYPE (1) IP ADDRESS TYPE (0800)

ETH ADDR LEN (6) IP ADDR LEN (4) OPERATION

SENDER’S ETH ADDR (first 4 octets)

SENDER’S ETH ADDR (last 2 octets) SENDER’S IP ADDR (first 2 octets)

SENDER’S IP ADDR (last 2 octets) TARGET’S ETH ADDR (first 2 octets)

TARGET’S ETH ADDR (last 4 octets)

TARGET’S IP ADDR (all 4 octets)

d Format when ARP used with Ethernet and IP

d Each Ethernet address is six octets

d Each IP address is four octets

NSD-Intel -- Chapt. 3 17 2004

End Of Review

Questions?

IV

Conventional Computer Hardware Architecture

NSD-Intel -- Chapt. 4 1 2004

Software-Based Network System

d Uses conventional hardware (e.g., PC)

d Software

– Runs the entire system

– Allocates memory

– Controls I/O devices

– Performs all protocol processing

NSD-Intel -- Chapt. 4 2 2004

Why Study Protocol Processing
On Conventional Hardware?

d Past

– Employed in early IP routers

– Many algorithms developed / optimized for conventional
hardware

d Present

– Used in low-speed network systems

– Easiest to create / modify

– Costs less than special-purpose hardware

NSD-Intel -- Chapt. 4 3 2004

Why Study Protocol Processing
On Conventional Hardware?

(continued)

d Future

– Processors continue to increase in speed

– Some conventional hardware present in all systems

NSD-Intel -- Chapt. 4 4 2004

Why Study Protocol Processing
On Conventional Hardware?

(continued)

d Future

– Processors continue to increase in speed

– Some conventional hardware present in all systems

– You will build software-based systems in lab!

NSD-Intel -- Chapt. 4 4 2004

Serious Question

d Which is growing faster?

– Processing power

– Network bandwidth

d Note: if network bandwidth growing faster

– Need special-purpose hardware

– Conventional hardware will become irrelevant

NSD-Intel -- Chapt. 4 5 2004

Growth Of Technologies

1990 1992 1994 1996 1998 2000 2002

10

100

1,000

10,000

..........
..........

..........
...........

..........
..........

..........
...........

........
........

........
........

......
....

....
....

....
....

....
....

....
....

.

486-33
486-66

Pent.-166

Pent.-400

Pent.-3GHz

...
...

...
...

...
...

...
...

...
...

.....
......

......
......

......
......

......
......

......
....

....
....

....
....

....
....

....
....

.........
............

.............
............

...

10 Mpbs
Ethernet

100 Mbps
FDDI

622 Mbps
OC-12

2.4 Gbps
OC-48

10 Gbps
OC-192

NSD-Intel -- Chapt. 4 6 2004

Conventional Computer Hardware

d Four important aspects

– Processor

– Memory

– I/O interfaces

– One or more buses

NSD-Intel -- Chapt. 4 6 2004

Illustration Of Conventional
Computer Architecture

bus

CPU MEMORY

. . .

network interfaces and other I/O devices

d Bus is central, shared interconnect

d All components contend for use

NSD-Intel -- Chapt. 4 7 2004

Bus Organization And Operations

.

control lines address lines data lines

d Parallel wires (C+A+D total)

d Used to pass

– Control information (C bits)

– An address (A bits)

– A data value (D bits)

NSD-Intel -- Chapt. 4 8 2004

Bus Width

d Number of parallel data bits known as width of bus

d Wider bus

– Transfers more data per unit time

– Costs more

– Requires more physical space

d Compromise: to simulate wider bus, use hardware that
multiplexes transfers

NSD-Intel -- Chapt. 4 9 2004

Bus Paradigm

d Only two basic operations

– Fetch

– Store

d All operations cast as forms of the above

NSD-Intel -- Chapt. 4 10 2004

Fetch/Store

d Fundamental paradigm

d Used throughout hardware, including network processors

NSD-Intel -- Chapt. 4 11 2004

Fetch Operation

d Place address of a device on address lines

d Issue fetch on control lines

d Use control lines to wait for device that owns the address to
respond

d If operation successful, extract value (response) from data
lines

d If not successful, report error

NSD-Intel -- Chapt. 4 12 2004

Store Operation

d Place address of a device on address lines

d Place value on data lines

d Issue store on control lines

d Use control lines to wait for device that owns the address to
respond

d If operation does not succeed, report error

NSD-Intel -- Chapt. 4 13 2004

Example Of Operations Mapped
Into Fetch/Store Paradigm

d Imagine disk device attached to a bus

d Assume disk hardware supports three (nontransfer)
operations:

– Start disk spinning

– Stop disk

– Determine current status

NSD-Intel -- Chapt. 4 14 2004

Example Of Operations Mapped
Into Fetch/Store Paradigm

(continued)

d Assign the disk two contiguous bus addresses D and D+1

d Arrange for store of nonzero to address D to start disk
spinning

d Arrange for store of zero to address D to stop disk

d Arrange for fetch from address D+1 to return current status

d Note: effect of store to address D+1 can be defined as

– Appears to work, but has no effect

– Returns an error

NSD-Intel -- Chapt. 4 15 2004

Bus Address Space

d Arbitrary hardware can be attached to bus

d K address lines result in 2k possible bus addresses

d Address can refer to

– Memory (e.g., RAM or ROM)

– I/O device

d Arbitrary devices can be placed at arbitrary addresses

d Address space can contain ‘‘holes’’

NSD-Intel -- Chapt. 4 16 2004

Bus Address Terminology

d Device on bus known as memory mapped I/O

d Locations that correspond to nontransfer operations known
as Control and Status Registers (CSRs)

NSD-Intel -- Chapt. 4 17 2004

Example Bus Address Space

disk

NIC

memory

hole (unassigned)

hole (unassigned)

hole (unassigned)

lowest bus address

highest bus address

NSD-Intel -- Chapt. 4 18 2004

Network I/O On
Conventional Hardware

d Network Interface Card (NIC)

– Attaches between bus and network

– Operates like other I/O devices

– Handles electrical/optical details of network

– Handles electrical details of bus

– Communicates over bus with CPU or other devices

NSD-Intel -- Chapt. 4 19 2004

Making Network I/O Fast

d Key idea: migrate more functionality onto NIC

d Four techniques used with bus

– Onboard address recognition & filtering

– Onboard packet buffering

– Direct Memory Access (DMA)

– Operation and buffer chaining

NSD-Intel -- Chapt. 4 20 2004

Onboard Address Recognition And Filtering

d NIC given set of addresses to accept

– Station’s unicast address

– Network broadcast address

– Zero or more multicast addresses

d When packet arrives, NIC checks destination address

– Accept packet if address on list

– Discard others

NSD-Intel -- Chapt. 4 21 2004

Onboard Packet Buffering

d NIC given high-speed local memory

d Incoming packet placed in NIC’s memory

d Allows computer’s memory/bus to operate slower than
network

d Handles small packet bursts

NSD-Intel -- Chapt. 4 22 2004

Direct Memory Access (DMA)

d CPU

– Allocates packet buffer in memory

– Passes buffer address to NIC

– Goes on with other computation

d NIC

– Accepts incoming packet from network

– Copies packet over bus to buffer in memory

– Informs CPU that packet has arrived

NSD-Intel -- Chapt. 4 23 2004

Buffer Chaining

d CPU

– Allocates multiple buffers

– Passes linked list to NIC

d NIC

– Receives next packet

– Divides into one or more buffers

d Advantage: a buffer can be smaller than a packet

NSD-Intel -- Chapt. 4 24 2004

Operation Chaining

d CPU

– Allocates multiple buffers

– Builds linked list of operations

– Passes list to NIC

d NIC

– Follows list and performs instructions

– Interrupts CPU after each operation

d Advantage: multiple operations proceed without CPU
intervention

NSD-Intel -- Chapt. 4 25 2004

Illustration Of
Operation Chaining

r r r

packet buffer packet buffer packet buffer

d Optimizes movement of data to memory

NSD-Intel -- Chapt. 4 26 2004

Data Flow Diagram

memoryNIC

data arrives

data leaves

d Depicts flow of data through hardware units

d Size of arrow represents throughput

d Used throughout the course and text

NSD-Intel -- Chapt. 4 27 2004

Summary

d Software-based network systems run on conventional
hardware

– Processor

– Memory

– I/O devices

– Bus

d Network interface cards can be optimized to reduce CPU
load

NSD-Intel -- Chapt. 4 28 2004

Questions?

V

Basic Packet Processing:
Algorithms And Data Structures

NSD-Intel -- Chapt. 5 1 2004

Copying

d Used when packet moved from one memory location to
another

d Expensive

d Must be avoided whenever possible

– Leave packet in buffer

– Pass buffer address among threads/layers

NSD-Intel -- Chapt. 5 2 2004

Possibilities For Buffer Allocation

d Fixed-sze buffers

* Large enough for largest packet

* Small, with bultiple buffers linked together for large
packets

d Variable-size buffers

NSD-Intel -- Chapt. 5 3 2004

Buffer Addressing

d Buffer address must be resolvable in all contexts

d Easiest implementation: keep buffers in kernel space

NSD-Intel -- Chapt. 5 4 2004

Integer Representation

d Two standards

– Little endian (least-significant byte at lowest address)

– Big endian (most-significant byte at lowest address)

NSD-Intel -- Chapt. 5 5 2004

Illustration Of Big And
Little Endian Integers

1 2 3 4

4 3 2 1

little endian

big endian

increasing memory addresses

increasing memory addresses

NSD-Intel -- Chapt. 5 6 2004

Integer Conversion

d Needed when heterogeneous computers communicate

d Protocols define network byte order

d Computers convert to network byte order

d Typical library functions

Function data size Translation222

ntohs 16 bits Network byte order to host’s byte order
htons 16 bits Host’s byte order to network byte order
ntohl 32 bits Network byte order to host’s byte order
htonl 32 bits Host’s byte order to network byte order

NSD-Intel -- Chapt. 5 7 2004

Examples Of Algorithms Implemented
With Software-Based Systems

d Layer 2

– Ethernet bridge

d Layer 3

– IP forwarding

– IP fragmentation and reassembly

d Layer 4

– TCP connection recognition and splicing

d Other

– Hash table lookup

NSD-Intel -- Chapt. 5 8 2004

Why Study These Algorithms?

NSD-Intel -- Chapt. 5 9 2004

Why Study These Algorithms?

d Provide insight to packet processing tasks

NSD-Intel -- Chapt. 5 9 2004

Why Study These Algorithms?

d Provide insight to packet processing tasks

d Reinforce concepts

NSD-Intel -- Chapt. 5 9 2004

Why Study These Algorithms?

d Provide insight to packet processing tasks

d Reinforce concepts

d Help students recall protocol details

NSD-Intel -- Chapt. 5 9 2004

Why Study These Algorithms?

d Provide insight to packet processing tasks

d Reinforce concepts

d Help students recall protocol details

d You will need them in lab!

NSD-Intel -- Chapt. 5 9 2004

Ethernet Bridge

Ethernet 1 Ethernet 2

BRIDGE

d Used between a pair of Ethernets

d Provides transparent, layer 2 connection

d Listens in promiscuous mode

d Forwards frames in both directions

d Uses addresses to filter

NSD-Intel -- Chapt. 5 9 2004

Bridge Filtering

d Uses source address in frames to identify computers on each
network

d Uses destination address to decide whether to forward frame

NSD-Intel -- Chapt. 5 10 2004

Bridge Algorithm

Assume: two network interfaces each operating in promiscuous
mode.
Create an empty list, L, that will contain pairs of values;
Do forever {

Acquire the next frame to arrive;
Set I to the interface over which the frame arrived;
Extract the source address, S;
Extract the destination address, D;
Add the pair (S, I) to list L if not already present.
If the pair (D, I) appears in list L {

Drop the frame;
} Else {

Forward the frame over the other interface;
}

}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
222

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1222

NSD-Intel -- Chapt. 5 11 2004

Implementation Of Table Lookup

d Need high speed (more on this later)

d Software-based systems typically use hashing for table
lookup

NSD-Intel -- Chapt. 5 12 2004

Hashing

d Optimizes number of probes

d Works well if table not full

d Practical technique: double hashing

NSD-Intel -- Chapt. 5 13 2004

Hashing Algorithm

Given: a key, a table in memory, and the table size N.
Produce: a slot in the table that corresponds to the key

or an empty table slot if the key is not in the table.
Method: double hashing with open addressing.
Choose P1 and P2 to be prime numbers;
Fold the key to produce an integer, K;
Compute table pointer Q equal to (P1 ×K) modulo N;
Compute increment R equal to (P2 ×K) modulo N;
While (table slot Q not equal to K and nonempty) {

Q ← (Q + R) modulo N;
}
At this point, Q either points to an empty table slot or to the

slot containing the key.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
222

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1222

NSD-Intel -- Chapt. 5 14 2004

Address Lookup

d Computer can compare integer in one operation

d Network address can be longer than integer (e.g., 48 bits)

d Two possibilities

– Use multiple comparisons per probe

– Fold address into integer key

NSD-Intel -- Chapt. 5 15 2004

Folding

d Maps N-bit value into M-bit key, M < N

d Typical technique: exclusive or

d Potential problem: two values map to same key

d Solution: compare full value when key matches

NSD-Intel -- Chapt. 5 16 2004

IP Forwarding

d Used in hosts as well as routers

d Conceptual mapping

(next hop, interface) ← f(datagram, routing table)

d Table driven

NSD-Intel -- Chapt. 5 17 2004

IP Routing Table

d One entry per destination

d Entry contains

– 32-bit IP address of destination

– 32-bit address mask

– 32-bit next-hop address

– N-bit interface number

NSD-Intel -- Chapt. 5 18 2004

Example IP Routing Table

Destination Address Next-Hop Interface
Address Mask Address Number22

192.5.48.0 255.255.255.0 128.210.30.5 2
128.10.0.0 255.255.0.0 128.210.141.12 1
0.0.0.0 0.0.0.0 128.210.30.5 2

d Values stored in binary

d Interface number is for internal use only

d Zero mask produces default route

NSD-Intel -- Chapt. 5 19 2004

IP Forwarding Algorithm

Given: destination address A and routing table R.
Find: a next hop and interface used to route datagrams to A.
For each entry in table R {

Set MASK to the Address Mask in the entry;
Set DEST to the Destination Address in the entry;
If (A & MASK) == DEST {

Stop; use the next hop and interface in the entry;
}

}
If this point is reached, declare error: no route exists;

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
222

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1222

d Note: algorithm assumes table is sorted in longest-prefix
order

NSD-Intel -- Chapt. 5 20 2004

IP Fragmentation

d Needed when datagram larger than network MTU

d Divides IP datagram into fragments

d Uses FLAGS bits in datagram header

0 D M FLAGS bits

0 = last fragment; 1 = more fragments

0 = may fragment; 1 = do not fragment

Reserved (must be zero)

NSD-Intel -- Chapt. 5 21 2004

IP Fragmentation Algorithm
(Part 1: Initialization)

Given: an IP datagram, D, and a network MTU.
Produce: a set of fragments for D.
If the DO NOT FRAGMENT bit is set {

Stop and report an error;

}
Compute the size of the datagram header, H;
Choose N to be the largest multiple of 8 such

that H+N ≤ MTU;
Initialize an offset counter, O, to zero;

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
222

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

NSD-Intel -- Chapt. 5 22 2004

IP Fragmentation Algorithm
(Part 2: Processing)

Repeat until datagram empty {

Create a new fragment that has a copy of D’s header;

Extract up to the next N octets of data from D and place

the data in the fragment;

Set the MORE FRAGMENTS bit in fragment header;

Set TOTAL LENGTH field in fragment header to be H+N;

Set FRAGMENT OFFSET field in fragment header to O;

Compute and set the CHECKSUM field in fragment

header;

Increment O by N/8;

}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1222

NSD-Intel -- Chapt. 5 23 2004

Reassembly

d Complement of fragmentation

d Uses IP SOURCE ADDRESS and IDENTIFICATION fields
in datagram header to group related fragments

d Joins fragments to form original datagram

NSD-Intel -- Chapt. 5 24 2004

Reassembly Algorithm

Given: a fragment, F, add to a partial reassembly.

Method: maintain a set of fragments for each datagram.

Extract the IP source address, S, and ID fields from F;

Combine S and ID to produce a lookup key, K;

Find the fragment set with key K or create a new set;

Insert F into the set;

If the set contains all the data for the datagram {

Form a completely reassembled datagram and process it;

}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
222

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1222

NSD-Intel -- Chapt. 5 25 2004

Data Structure For Reassembly

d Two parts

– Buffer large enough to hold original datagram

– Linked list of pieces that have arrived

40 80 40

fragment in
reassembly buffer

reassembly buffer

NSD-Intel -- Chapt. 5 26 2004

TCP Connection

d Involves a pair of endpoints

d Started with SYN segment

d Terminated with FIN or RESET segment

d Identified by 4-tuple

(src addr, dest addr, src port, dest port)

NSD-Intel -- Chapt. 5 27 2004

TCP Connection Recognition Algorithm
(Part 1)

Given: a copy of traffic passing across a network.

Produce: a record of TCP connections present in the traffic.

Initialize a connection table, C, to empty;

For each IP datagram that carries a TCP segment {

Extract the IP source, S, and destination, D, addresses;

Extract the source, P1, and destination, P2, port numbers;

Use (S,D,P1,P2) as a lookup key for table C and

create a new entry, if needed;
11
1
1
1
1
1
1
1
1
1
1
1
1
1
222

11
1
1
1
1
1
1
1
1
1
1
1
1
1

NSD-Intel -- Chapt. 5 28 2004

TCP Connection Recognition Algorithm
(Part 2)

If the segment has the RESET bit set, delete the entry;

Else if the segment has the FIN bit set, mark the
connection

closed in one direction, removing the entry from C if

the connection was previously closed in the other;

Else if the segment has the SYN bit set, mark the
connection as

being established in one direction, making it completely

established if it was previously marked as being

established in the other;

}

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1222

NSD-Intel -- Chapt. 5 29 2004

TCP Splicing

d Join two TCP connections

d Allow data to pass between them

d To avoid termination overhead translate segment header
fields

– Acknowledgement number

– Sequence number

NSD-Intel -- Chapt. 5 30 2004

Illustration Of TCP Splicing

splicerHost
A

Host
B

TCP connection #1 TCP connection #2

sequence 200 sequence 50 sequence 860 sequence 1200

Connection Sequence Connection Sequence
& Direction Number & Direction Number22

Incoming #1 200 Incoming #2 1200
Outgoing #2 860 Outgoing #1 5022222222222222222222222222 22222222222222222222222222

Change 660 Change -1150

NSD-Intel -- Chapt. 5 31 2004

TCP Splicing Algorithm
(Part 1)

Given: two TCP connections.

Produce: sequence translations for splicing the connection.

Compute D1, the difference between the starting sequences

on incoming connection 1 and outgoing connection 2;

Compute D2, the difference between the starting sequences

on incoming connection 2 and outgoing connection 1;
11
1
1
1
1
1
1
1
1
1
1
222

11
1
1
1
1
1
1
1
1
1
1

NSD-Intel -- Chapt. 5 32 2004

TCP Splicing Algorithm
(Part 2)

For each segment {

If segment arrived on connection 1 {

Add D1 to sequence number;

Subtract D2 from acknowledgement number;

} else if segment arrived on connection 2 {

Add D2 to sequence number;

Subtract D1 from acknowledgement number;

}

}
11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 11

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1222

NSD-Intel -- Chapt. 5 33 2004

Summary

d Packet processing algorithms include

– Ethernet bridging

– IP fragmentation and reassembly

– IP forwarding

– TCP splicing

d Table lookup important

– Full match for layer 2

– Longest prefix match for layer 3

NSD-Intel -- Chapt. 5 34 2004

Questions?

For Hands-On Experience With

A Software-Based System:

Enroll in CS 636 !

NSD-Intel -- Chapt. 5 36 2004

VI

Packet Processing Functions

NSD-Intel -- Chapt. 6 1 2004

Goal

d Identify functions that occur in packet processing

d Devise set of operations sufficient for all packet processing

d Find an efficient implementation for the operations

NSD-Intel -- Chapt. 6 2 2004

Packet Processing Functions We Will Consider

d Address lookup and packet forwarding

d Error detection and correction

d Fragmentation, segmentation, and reassembly

d Frame and protocol demultiplexing

d Packet classification

d Queueing and packet discard

d Scheduling and timing

d Security: authentication and privacy

d Traffic measurement, policing, and shaping

NSD-Intel -- Chapt. 6 3 2004

Address Lookup And Packet Forwarding

d Forwarding requires address lookup

d Lookup is table driven

d Two types

– Exact match (typically layer 2)

– Longest-prefix match (typically layer 3)

d Cost depends on size of table and type of lookup

NSD-Intel -- Chapt. 6 4 2004

Error Detection And Correction

d Data sent with packet used as verification

– Checksum

– CRC

d Cost proportional to size of packet

d Often implemented with special-purpose hardware

NSD-Intel -- Chapt. 6 5 2004

An Important Note About Cost

The cost of an operation is proportional to the amount of data
processed. An operation such as checksum computation that
requires examination of all the data in a packet is among the
most expensive.

NSD-Intel -- Chapt. 6 6 2004

Fragmentation, Segmentation, And Reassembly

d IP fragments and reassembles datagrams

d ATM segments and reassembles AAL5 packets

d Same idea; details differ

d Cost is high because

– State must be kept and managed

– Unreassembled fragments occupy memory

NSD-Intel -- Chapt. 6 7 2004

Frame And Protocol Demultiplexing

d Traditional technique used in layered protocols

d Type appears in each header

– Assigned on output

– Used on input to select ‘‘next’’ protocol

d Cost of demultiplexing proportional to number of layers

NSD-Intel -- Chapt. 6 8 2004

Packet Classification

d Alternative to demultiplexing

d Crosses multiple layers

d Achieves lower cost

d More on classification later in the course

NSD-Intel -- Chapt. 6 9 2004

Queueing And Packet Discard

d General paradigm is store-and-forward

– Incoming packet placed in queue

– Outgoing packet placed in queue

d When queue is full, choose packet to discard

d Affects throughput of higher-layer protocols

NSD-Intel -- Chapt. 6 10 2004

Queueing Priorities

d Multiple queues used to enforce priority among packets

d Incoming packet

– Assigned priority as function of contents

– Placed in appropriate priority queue

d Queueing discipline

– Examines priority queues

– Chooses which packet to send

NSD-Intel -- Chapt. 6 11 2004

Examples Of Queueing Disciplines

d Priority Queueing

– Assign unique priority number to each queue

– Choose packet from highest priority queue that is
nonempty

– Known as strict priority queueing

– Can lead to starvation

NSD-Intel -- Chapt. 6 12 2004

Examples Of Queueing Disciplines
(continued)

d Weighted Round Robin (WRR)

– Assign unique priority number to each queue

– Process all queues round-robin

– Compute N, max number of packets to select from a
queue proportional to priority

– Take up to N packets before moving to next queue

– Works well if all packets equal size

NSD-Intel -- Chapt. 6 13 2004

Examples Of Queueing Disciplines
(continued)

d Weighted Fair Queueing (WFQ)

– Make selection from queue proportional to priority

– Use packet size rather than number of packets

– Allocates priority to amount of data from a queue rather
than number of packets

NSD-Intel -- Chapt. 6 14 2004

Scheduling And Timing

d Important mechanisms

d Used to coordinate parallel and concurrent tasks

– Processing on multiple packets

– Processing on multiple protocols

– Multiple processors

d Scheduler attempts to achieve fairness

NSD-Intel -- Chapt. 6 15 2004

Security: Authentication And Privacy

d Authentication mechanisms

– Ensure sender’s identity

d Confidentiality mechanisms

– Ensure that intermediaries cannot interpret packet
contents

d Note: in common networking terminology, privacy refers to
confidentiality

– Example: Virtual Private Networks

NSD-Intel -- Chapt. 6 16 2004

Traffic Measurement And Policing

d Used by network managers

d Can measure aggregate traffic or per-flow traffic

d Often related to Service Level Agreement (SLA)

d Cost is high if performed in real-time

NSD-Intel -- Chapt. 6 17 2004

Traffic Shaping

d Make traffic conform to statistical bounds

d Typical use

– Smooth bursts

– Avoid packet trains

d Only possibilities

– Discard packets (seldom used)

– Delay packets

NSD-Intel -- Chapt. 6 18 2004

Example Traffic Shaping Mechanisms

d Leaky bucket

– Easy to implement

– Popular

– Sends steady number of packets per second

– Rate depends on number of packets waiting

– Does not guarantee steady data rate

NSD-Intel -- Chapt. 6 19 2004

Example Traffic Shaping Mechanisms
(continued)

d Token bucket

– Sends steady number of bits per second

– Rate depends on number of bits waiting

– Achieves steady data rate

– More difficult to implement

NSD-Intel -- Chapt. 6 20 2004

Illustration Of Traffic Shaper

packet queue

packets
arrive

packets
leave

forwards packets at
a steady rate

d Packets

– Arrive in bursts

– Leave at steady rate

NSD-Intel -- Chapt. 6 21 2004

Timer Management

d Fundamental piece of network system

d Needed for

– Scheduling

– Traffic shaping

– Other protocol processing (e.g., retransmission)

d Cost

– Depends on number of timer operations (e.g., set,
cancel)

– Can be high

NSD-Intel -- Chapt. 6 22 2004

Summary

d Primary packet processing functions are

– Address lookup and forwarding

– Error detection and correction

– Fragmentation and reassembly

– Demultiplexing and classification

– Queueing and discard

– Scheduling and timing

– Security functions

– Traffic measurement, policing, and shaping

NSD-Intel -- Chapt. 6 23 2004

Questions?

VII

Protocol Software On A
Conventional Processor

NSD-Intel -- Chapt. 7 1 2004

Possible Implementations Of
Protocol Software

d In an application program

– Easy to program

– Runs as user-level process

– No direct access to network devices

– High cost to copy data from kernel address space

– Cannot run at wire speed

NSD-Intel -- Chapt. 7 2 2004

Possible Implementations Of
Protocol Software

(continued)

d In an embedded system

– Special-purpose hardware device

– Dedicated to specific task

– Ideal for stand-alone system

– Software has full control

NSD-Intel -- Chapt. 7 3 2004

Possible Implementations Of
Protocol Software

(continued)

d In an embedded system

– Special-purpose hardware device

– Dedicated to specific task

– Ideal for stand-alone system

– Software has full control

– You will experience this in lab!

NSD-Intel -- Chapt. 7 3 2004

Possible Implementations Of
Protocol Software

(continued)

d In an operating system kernel

– More difficult to program than application

– Runs with kernel privilege

– Direct access to network devices

NSD-Intel -- Chapt. 7 4 2004

Interface To The Network

d Known as Application Program Interface (API)

d Can be

– Asynchronous

– Synchronous

d Synchronous interface can use

– Blocking

– Polling

NSD-Intel -- Chapt. 7 5 2004

Asynchronous API

d Also known as event-driven

d Programmer

– Writes set of functions

– Specifies which function to invoke for each event type

d Programmer has no control over function invocation

d Functions keep state in shared memory

d Difficult to program

d Example: function f() called when packet arrives

NSD-Intel -- Chapt. 7 6 2004

Synchronous API Using Blocking

d Programmer

– Writes main flow-of-control

– Explicitly invokes functions as needed

– Built-in functions block until request satisfied

d Example: function wait_for_packet() blocks until packet
arrives

d Easier to program

NSD-Intel -- Chapt. 7 7 2004

Synchronous API Using Polling

d Nonblocking form of synchronous API

d Each function call returns immediately

– Performs operation if available

– Returns error code otherwise

d Example: function try_for_packet() either returns next
packet or error code if no packet has arrived

d Closer to underlying hardware

NSD-Intel -- Chapt. 7 8 2004

Typical Implementations And APIs

d Application program

– Synchronous API using blocking (e.g., socket API)

– Another application thread runs while an application
blocks

d Embedded systems

– Synchronous API using polling

– CPU dedicated to one task

d Operating systems

– Asynchronous API

– Built on interrupt mechanism

NSD-Intel -- Chapt. 7 9 2004

Example Asynchronous API

d Design goals

– For use with network processor

– Simplest possible interface

– Sufficient for basic packet processing tasks

d Includes

– I/O functions

– Timer manipulation functions

NSD-Intel -- Chapt. 7 10 2004

Example Asynchronous API
(continued)

d Initialization and termination functions

– on_startup()

– on_shutdown()

d Input function (called asynchronously)

– recv_frame()

d Output functions

– new_fbuf()

– send_frame()

NSD-Intel -- Chapt. 7 11 2004

Example Asynchronous API
(continued)

d Timer functions (called asynchronously)

– delayed_call()

– periodic_call()

– cancel_call()

d Invoked by outside application

– console_command()

NSD-Intel -- Chapt. 7 12 2004

Processing Priorities

d Determine which code CPU runs at any time

d General idea

– Hardware devices need highest priority

– Protocol software has medium priority

– Application programs have lowest priority

d Queues provide buffering across priorities

NSD-Intel -- Chapt. 7 13 2004

Illustration Of Priorities

device drivers
handling frames

protocol
processing

Applications

NIC1 NIC2

highest priority

medium priority

lowest priority

packet queue
between levels

NSD-Intel -- Chapt. 7 14 2004

Implementation Of Priorities
In An Operating System

d Two possible approaches

– Interrupt mechanism

– Kernel threads

NSD-Intel -- Chapt. 7 15 2004

Interrupt Mechanism

d Built into hardware

d Operates asynchronously

d Saves current processing state

d Changes processor status

d Branches to specified location

NSD-Intel -- Chapt. 7 16 2004

Two Types Of Interrupts

d Hardware interrupt

– Caused by device (bus)

– Must be serviced quickly

d Software interrupt

– Caused by executing program

– Lower priority than hardware interrupt

– Higher priority than other OS code

NSD-Intel -- Chapt. 7 17 2004

Software Interrupts And
Protocol Code

d Protocol stack operates as software interrupt

d When packet arrives

– Hardware interrupts

– Device driver raises software interrupt

d When device driver finishes

– Hardware interrupt clears

– Protocol code is invoked

NSD-Intel -- Chapt. 7 18 2004

Kernel Threads

d Alternative to interrupts

d Familiar to programmer

d Finer-grain control than software interrupts

d Can be assigned arbitrary range of priorities

NSD-Intel -- Chapt. 7 19 2004

Conceptual Organization

d Packet passes among multiple threads of control

d Queue of packets between each pair of threads

d Threads synchronize to access queues

NSD-Intel -- Chapt. 7 20 2004

Possible Organization Of
Kernel Threads For Layered Protocols

d One thread per layer

d One thread per protocol

d Multiple threads per protocol

d Multiple threads per protocol plus timer management
thread(s)

d One thread per packet

NSD-Intel -- Chapt. 7 21 2004

One Thread Per Layer

d Easy for programmer to understand

d Implementation matches concept

d Allows priority to be assigned to each layer

d Means packet is enqueued once per layer

NSD-Intel -- Chapt. 7 22 2004

Illustration Of One Thread Per Layer

applications

. .

. .

T2

T3

T4

queue

queue

queue

Layer 2

Layer 3

Layer 4

packets arrive packets leave

app. sends app. receives

NSD-Intel -- Chapt. 7 23 2004

One Thread Per Protocol

d Like one thread per layer

– Implementation matches concept

– Means packet is enqueued once per layer

d Advantages over one thread per layer

– Easier for programmer to understand

– Finer-grain control

– Allows priority to be assigned to each protocol

NSD-Intel -- Chapt. 7 24 2004

Illustration Of One Thread Per Protocol

applications

. .

udp tcp

queue queue

d TCP and UDP reside at same layer

d Separation allows priority

NSD-Intel -- Chapt. 7 25 2004

Multiple Threads Per Protocol

d Further division of duties

d Simplifies programming

d More control than single thread

d Typical division

– Thread for incoming packets

– Thread for outgoing packets

– Thread for management/timing

NSD-Intel -- Chapt. 7 26 2004

Illustration Of Multiple
Threads Used With TCP

applications

. .

tcp

tim.

queue

timer thread

d Separate timer makes programming easier

NSD-Intel -- Chapt. 7 27 2004

Timers And Protocols

d Many protocols implement timeouts

– TCP

* Retransmission timeout

* 2MSL timeout

– ARP

* Cache entry timeout

– IP

* Reassembly timeout

NSD-Intel -- Chapt. 7 28 2004

Multiple Threads Per Protocol
Plus Timer Management Thread(s)

d Observations

– Many protocols each need timer functionality

– Each timer thread incurs overhead

d Solution: consolidate timers for multiple protocols

NSD-Intel -- Chapt. 7 29 2004

Is One Timer Thread Sufficient?

d In theory

– Yes

d In practice

– Large range of timeouts (microseconds to tens of
seconds)

– May want to give priority to some timeouts

d Solution: two or more timer threads

NSD-Intel -- Chapt. 7 30 2004

Multiple Timer Threads

d Two threads usually suffice

d Large-granularity timer

– Values specified in seconds

– Operates at lower priority

d Small-granularity timer

– Values specified in microseconds

– Operates at higher priority

NSD-Intel -- Chapt. 7 31 2004

Thread Synchronization

d Thread for layer i

– Needs to pass a packet to layer i + 1

– Enqueues the packet

d Thread for layer i + 1

– Retrieves packet from the queue

NSD-Intel -- Chapt. 7 32 2004

Thread Synchronization

d Thread for layer i

– Needs to pass a packet to layer i + 1

– Enqueues the packet

d Thread for layer i + 1

– Retrieves packet from the queue

d Context switch required!

NSD-Intel -- Chapt. 7 32 2004

Context Switch

d OS function

d CPU passes from current thread to a waiting thread

d High cost

d Must be minimized

NSD-Intel -- Chapt. 7 33 2004

One Thread Per Packet

d Preallocate set of threads

d Thread operation

– Waits for packet to arrive

– Moves through protocol stack

– Returns to wait for next packet

d Minimizes context switches

NSD-Intel -- Chapt. 7 34 2004

Summary

d Packet processing software usually runs in OS

d API can be synchronous or asynchronous

d Priorities achieved with

– Software interrupts

– Threads

d Variety of thread architectures possible

NSD-Intel -- Chapt. 7 35 2004

Questions?

VIII

Hardware Architectures
For Protocol Processing

And
Aggregate Rates

NSD-Intel -- Chapt. 8 1 2004

A Brief History Of
Computer Hardware

d 1940s

– Beginnings

d 1950s

– Consolidation of von Neumann architecture

– I/O controlled by CPU

d 1960s

– I/O becomes important

– Evolution of third generation architecture with interrupts

NSD-Intel -- Chapt. 8 2 2004

I/O Processing

d Evolved from after-thought to central influence

d Low-end systems (e.g., microcontrollers)

– Dumb I/O interfaces

– CPU does all the work (polls devices)

– Single, shared memory

– Low cost, but low speed

NSD-Intel -- Chapt. 8 3 2004

I/O Processing
(continued)

d Mid-range systems (e.g., minicomputers)

– Single, shared memory

– I/O interfaces contain logic for transfer and status
operations

– CPU

* Starts device then resumes processing

– Device

* Transfers data to / from memory

* Interrupts when operation complete

NSD-Intel -- Chapt. 8 4 2004

I/O Processing
(continued)

d High-end systems (e.g., mainframes)

– Separate, programmable I/O processor

– OS downloads code to be run

– Device has private on-board buffer memory

– Examples: IBM channel, CDC peripheral processor

NSD-Intel -- Chapt. 8 5 2004

Networking Systems Evolution

d Twenty year history

d Same trend as computer architecture

– Began with central CPU

– Shift to emphasis on I/O

d Three main generations

NSD-Intel -- Chapt. 8 6 2004

First Generation Network Systems

d Traditional software-based router

d Used conventional (minicomputer) hardware

– Single general-purpose processor

– Single shared memory

– I/O over a bus

– Network interface cards use same design as other I/O
devices

NSD-Intel -- Chapt. 8 7 2004

Protocol Processing In
First Generation Network Systems

all other
processing

framing &
address

recognition

framing &
address

recognition

NIC1 NIC2Standard CPU

d General-purpose processor handles most tasks

d Sufficient for low-speed systems

d Note: we will examine other generations later in the course

NSD-Intel -- Chapt. 8 8 2004

How Fast Does A CPU Need To Be?

d Depends on

– Rate at which data arrives

– Amount of processing to be performed

NSD-Intel -- Chapt. 8 9 2004

Two Measures Of Speed

d Data rate (bits per second)

– Per interface rate

– Aggregate rate

d Packet rate (packets per second)

– Per interface rate

– Aggregate rate

NSD-Intel -- Chapt. 8 10 2004

How Fast Is A Fast Connection?

d Definition of fast data rate keeps changing

– 1960: 10 Kbps

– 1970: 1 Mbps

– 1980: 10 Mbps

– 1990: 100 Mbps

– 2000: 1000 Mbps (1 Gbps)

– 2004: 2400 Mbps

NSD-Intel -- Chapt. 8 11 2004

How Fast Is A Fast Connection?

d Definition of fast data rate keeps changing

– 1960: 10 Kbps

– 1970: 1 Mbps

– 1980: 10 Mbps

– 1990: 100 Mbps

– 2000: 1000 Mbps (1 Gbps)

– 2004: 2400 Mbps

– Soon: 10 Gbps???

NSD-Intel -- Chapt. 8 12 2004

Aggregate Rate Vs.
Per-Interface Rate

d Interface rate

– Rate at which data enters / leaves

d Aggregate

– Sum of interface rates

– Measure of total data rate system can handle

d Note: aggregate rate crucial if CPU handles traffic from all
interfaces

NSD-Intel -- Chapt. 8 12 2004

A Note About System Scale

The aggregate data rate is defined to be the sum of the rates at
which traffic enters or leaves a system. The maximum
aggregate data rate of a system is important because it limits
the type and number of network connections the system can
handle.

NSD-Intel -- Chapt. 8 13 2004

Packet Rate Vs. Data Rate

d Sources of CPU overhead

– Per-bit processing

– Per-packet processing

d Interface hardware handles much of per-bit processing

NSD-Intel -- Chapt. 8 14 2004

A Note About System Scale

For protocol processing tasks that have a fixed cost per packet,
the number of packets processed is more important than the
aggregate data rate.

NSD-Intel -- Chapt. 8 15 2004

Example Packet Rates

Technology Network Packet Rate Packet Rate
Data Rate For Small Packets For Large Packets
In Gbps In Kpps In Kpps222

10Base-T 0.010 19.5 0.8
100Base-T 0.100 195.3 8.2
OC-3 0.156 303.8 12.8
OC-12 0.622 1,214.8 51.2
1000Base-T 1.000 1,953.1 82.3
OC-48 2.488 4,860.0 204.9
OC-192 9.953 19,440.0 819.6
OC-768 39.813 77,760.0 3,278.4

d Key concept: maximum packet rate occurs with minimum-
size packets

NSD-Intel -- Chapt. 8 16 2004

Bar Chart Of Example Packet Rates

100 Kpps

101 Kpps

102 Kpps

103 Kpps

104 Kpps

105 Kpps

19.5

195.3
303.8

1214.8
1953.1

4860.0

19440.0

77760.0

10Base-T 100Base-T OC-3 OC-12 1000Base-T OC-48 OC-192 OC-768

NSD-Intel -- Chapt. 8 17 2004

Bar Chart Of Example Packet Rates

100 Kpps

101 Kpps

102 Kpps

103 Kpps

104 Kpps

105 Kpps

19.5

195.3
303.8

1214.8
1953.1

4860.0

19440.0

77760.0

10Base-T 100Base-T OC-3 OC-12 1000Base-T OC-48 OC-192 OC-768

d Gray areas show rates for large packets
NSD-Intel -- Chapt. 8 17 2004

Time Per Packet

Technology Time per packet Time per packet
for small packets for large packets

(in µs) (in µs)22

10Base-T 51.20 1,214.40
100Base-T 5.12 121.44
OC-3 3.29 78.09
OC-12 0.82 19.52
1000Base-T 0.51 12.14
OC-48 0.21 4.88
OC-192 0.05 1.22
OC-768 0.01 0.31

d Note: these numbers are for a single connection!

NSD-Intel -- Chapt. 8 18 2004

Conclusion

Software running on a general-purpose processor is an
insufficient architecture to handle high-speed networks because
the aggregate packet rate exceeds the capabilities of a CPU.

NSD-Intel -- Chapt. 8 19 2004

Possible Ways To Solve
The CPU Bottleneck

d Fine-grain parallelism

d Symmetric coarse-grain parallelism

d Asymmetric coarse-grain parallelism

d Special-purpose coprocessors

d NICs with onboard processing

d Smart NICs with onboard stacks

d Cell switching

d Data pipelines

NSD-Intel -- Chapt. 8 20 2004

Fine-Grain Parallelism

d Multiple processors

d Instruction-level parallelism

d Example:

– Parallel checksum: add values of eight consecutive
memory locations at the same time

d Assessment: insignificant advantages for packet processing

NSD-Intel -- Chapt. 8 21 2004

Symmetric Coarse-Grain Parallelism

d Symmetric multiprocessor hardware

– Multiple, identical processors

d Typical design: each CPU operates on one packet

d Requires coordination

d Assessment: coordination and data access means N
processors cannot handle N times more packets than one
processor

NSD-Intel -- Chapt. 8 22 2004

Asymmetric Coarse-Grain Parallelism

d Multiple processors

d Each processor

– Optimized for specific task

– Includes generic instructions for control

d Assessment

– Same problems of coordination and data access as
symmetric case

– Designer must choose how many copies of each
processor type

NSD-Intel -- Chapt. 8 23 2004

Special-Purpose Coprocessors

d Special-purpose hardware

d Added to conventional processor to speed computation

d Invoked like software subroutine

d Typical implementation: ASIC chip

d Choose operations that yield greatest improvement in speed

NSD-Intel -- Chapt. 8 24 2004

General Principle

To optimize computation, move operations that account for the
most CPU time from software into hardware.

NSD-Intel -- Chapt. 8 25 2004

General Principle

To optimize computation, move operations that account for the
most CPU time from software into hardware.

d Idea known as Amdahl’s law (performance improvement
from faster hardware technology is limited to the fraction of
time the faster technology can be used)

NSD-Intel -- Chapt. 8 25 2004

NICs And Onboard Processing

d Basic optimizations

– Onboard address recognition and filtering

– Onboard buffering

– DMA

– Buffer and operation chaining

d Further optimization possible

NSD-Intel -- Chapt. 8 26 2004

Smart NICs With Onboard Stacks

d Add hardware to NIC

– Off-the-shelf chips for layer 2

– ASICs for layer 3

d Allows each NIC to operate independently

– Effectively a multiprocessor

– Total processing power increased dramatically

NSD-Intel -- Chapt. 8 27 2004

Illustration Of Smart NICs
With Onboard Processing

all other
processing

most layer 2 processing
some layer 3 processing

most layer 2 processing
some layer 3 processing

Smart NIC1 Smart NIC2Standard CPU

d NIC handles layers 2 and 3

d CPU only handles exceptions

NSD-Intel -- Chapt. 8 28 2004

Cell Switching

d Alternative to new hardware

d Changes

– Basic paradigm

– All details (e.g., protocols)

d Connection-oriented

NSD-Intel -- Chapt. 8 29 2004

Cell Switching Details

d Fixed-size packets

– Allows fixed-size buffers

– Guaranteed time to transmit/receive

d Relative (connection-oriented) addressing

– Smaller address size

– Label on packet changes at each switch

– Requires connection setup

d Example: ATM

NSD-Intel -- Chapt. 8 30 2004

Data Pipeline

d Move each packet through series of processors

d Each processor handles some tasks

d Assessment

– Well-suited to many protocol processing tasks

– Individual processor can be fast

NSD-Intel -- Chapt. 8 31 2004

Illustration Of Data Pipeline

stage 1
stage 2

stage 3

stage 4

stage 5

packets enter
the pipeline

packets leave
the pipeline

interstage packet buffer

d Pipeline can contain heterogeneous processors

d Packets pass through each stage

NSD-Intel -- Chapt. 8 32 2004

Summary

d Packet rate can be more important than data rate

d Highest packet rate achieved with smallest packets

d Rates measured per interface or aggregate

d Special hardware needed for highest-speed network systems

– Smart NIC can include part of protocol stack

– Parallel and pipelined hardware also possible

NSD-Intel -- Chapt. 8 33 2004

Questions?

IX

Classification
And

Forwarding

NSD-Intel -- Chapt. 9 1 2004

Recall

d Packet demultiplexing

– Used with layered protocols

– Packet proceeds through one layer at a time

– On input, software in each layer chooses module at next
higher layer

– On output, type field in each header specifies
encapsulation

NSD-Intel -- Chapt. 9 2 2004

The Disadvantage Of Demultiplexing

Although it provides freedom to define and use arbitrary
protocols without introducing transmission overhead,
demultiplexing is inefficient because it imposes sequential
processing among layers.

NSD-Intel -- Chapt. 9 3 2004

Packet Classification

d Alternative to demultiplexing

d Designed for higher speed

d Considers all layers at the same time

d Linear in number of fields

d Two possible implementations

– Software

– Hardware

NSD-Intel -- Chapt. 9 4 2004

Example Classification

d Classify Ethernet frames carrying traffic to Web server

d Specify exact header contents in rule set

d Example

– Ethernet type field specifies IP

– IP type field specifies TCP

– TCP destination port specifies Web server

NSD-Intel -- Chapt. 9 5 2004

Example Classification
(continued)

d Field sizes and values

– 2-octet Ethernet type is 080016

– 1-octet IP type is 6

– 2-octet TCP destination port is 80

NSD-Intel -- Chapt. 9 6 2004

Illustration Of Encapsulated Headers

0 4 8 10 16 19 24 31

ETHERNET DEST. (0-1)

ETHERNET DESTINATION (2-5)

ETHERNET SOURCE (0-3)

ETHERNET SOURCE (4-5) ETHERNET TYPE

VERS HLEN SERVICE IP TOTAL LENGTH

IP IDENT FLAGS FRAG. OFFSET

IP TTL IP TYPE IP HDR. CHECKSUM

IP SOURCE ADDRESS

IP DESTINATION ADDRESS

TCP SOURCE PORT TCP DESTINATION PORT

TCP SEQUENCE

TCP ACKNOWLEDGEMENT

HLEN NOT USED CODE BITS TCP WINDOW

TCP CHECKSUM TCP URGENT PTR

Start Of TCP Data . . .

d Highlighted fields are used for classification of Web server
traffic

NSD-Intel -- Chapt. 9 7 2004

Software Implementation
Of Classification

d Compare values in header fields

d Conceptually a logical and of all field comparisons

d Example

if ((frame type == 0x0800) && (IP type == 6) && (TCP port == 80))

declare the packet matches the classification;

else

declare the packet does not match the classification;

NSD-Intel -- Chapt. 9 8 2004

Optimizing Software Classification

d Comparisons performed sequentially

d Can reorder comparisons to minimize effort

NSD-Intel -- Chapt. 9 9 2004

Example Of Optimizing
Software Classification

d Assume

– 95.0% of all frames have frame type 080016

– 87.4% of all frames have IP type 6

– 74.3% of all frames have TCP port 80

d Also assume values 6 and 80 do not occur in corresponding
positions in non-IP packet headers

d Reordering tests can optimize processing time

NSD-Intel -- Chapt. 9 10 2004

Example Of Optimizing
Software Classification

(continued)

if ((TCP port == 80) && (IP type == 6) && (frame type == 0x0800))

declare the packet matches the classification;

else

declare the packet does not match the classification;

d At each step, test the field that will eliminate the most
packets

NSD-Intel -- Chapt. 9 11 2004

Note About Optimization

Although the maximum number of comparisons in a software
classifier is fixed, the average number of comparisons is
determined by the order of the tests; minimum comparisons
result if, at each step, the classifier tests the field that
eliminates the most packets.

NSD-Intel -- Chapt. 9 12 2004

Hardware Implementation Of Classification

d Can build special-purpose hardware

d Steps

– Extract needed fields

– Concatenate bits

– Place result in register

– Perform comparison

d Hardware can operate in parallel

NSD-Intel -- Chapt. 9 13 2004

Illustration Of Hardware Classifier

Memory

hardware register

packet in memory

comparator

constant to compare

wide data path to move
packet headers from memory

to a hardware register

result of comparison

specific header bytes
extracted for comparison

d Constant for Web classifier is 08.00.06.00.5016

NSD-Intel -- Chapt. 9 14 2004

Special Cases Of Classification

d Multiple categories

d Variable-size headers

d Dynamic classification

NSD-Intel -- Chapt. 9 15 2004

In Practice

d Classification usually involves multiple categories

d Packets grouped together into flows

d May have a default category

d Each category specified with rule set

NSD-Intel -- Chapt. 9 16 2004

Example Multi-Category Classification

d Flow 1: traffic destined for Web server

d Flow 2: traffic consisting of ICMP echo request packets

d Flow 3: all other traffic (default)

NSD-Intel -- Chapt. 9 17 2004

Rule Sets

d Web server traffic

– 2-octet Ethernet type is 080016

– 1-octet IP type is 6

– 2-octet TCP destination port is 80

d ICMP echo traffic

– 2-octet Ethernet type is 080016

– 1-octet IP type is 1

– 1-octet ICMP type is 8

NSD-Intel -- Chapt. 9 18 2004

Software Implementation Of Multiple Rules

if (frame type != 0x0800) {

send frame to flow 3;

} else if (IP type == 6 && TCP destination port == 80) {

send packet to flow 1;

} else if (IP type == 1 && ICMP type == 8) {

send packet to flow 2;

} else {

send frame to flow 3;

}

d Further optimization possible

NSD-Intel -- Chapt. 9 19 2004

Variable-Size Packet Headers

d Fields not at fixed offsets

d Easily handled with software

d Finite cases can be specified in rules

NSD-Intel -- Chapt. 9 20 2004

Example Variable-Size Header: IP Options

d Rule Set 1

– 2-octet frame type field contains 080016

– 1-octet field at the start of the datagram contains 4516

– 1-octet type field in the IP datagram contains 6

– 2-octet field 22 octets from start of the datagram
contains 80

d Rule Set 2

– 2-octet frame type field contains 080016

– 1-octet field at the start of the datagram contains 4616

– 1-octet type field in the IP datagram contains 6

– 2-octet field 26 octets from the start of datagram
contains 80

NSD-Intel -- Chapt. 9 21 2004

Effect Of Protocol Design On Classification

d Fixed headers fastest to classify

d Each variable-size header adds one computation step

d In worst case, classification no faster than demultiplexing

d Extreme example: IPv6

NSD-Intel -- Chapt. 9 22 2004

Hybrid Classification

hardware
classifier

software
classifier

. . .
. . .

packets arrive
for classification

exit for
unclassified packets

packets unrecognized
by hardware

packets classified into
flows by hardware packets classified into

flows by software

d Combines hardware and software mechanisms

– Hardware used for standard cases

– Software used for exceptions

d Note: software classifier can operate at slower rate

NSD-Intel -- Chapt. 9 23 2004

Two Basic Types Of Classification

d Static

– Flows specified in rule sets

– Header fields and values known a priori

d Dynamic

– Flows created by observing packet stream

– Values taken from headers

– Allows fine-grain flows

– Requires state information

NSD-Intel -- Chapt. 9 24 2004

Example Static Classification

d Allocate one flow per service type

d One header field used to identify flow

– IP TYPE OF SERVICE (TOS)

d Use DIFFSERV interpretation

d Note: Ethernet type field also checked

NSD-Intel -- Chapt. 9 25 2004

Example Dynamic Classification

d Allocate flow per TCP connection

d Header fields used to identify flow

– IP source address

– IP destination address

– TCP source port number

– TCP destination port number

d Note: Ethernet type and IP type fields also checked

NSD-Intel -- Chapt. 9 26 2004

Implementation Of Dynamic Classification

d Usually performed in software

d State kept in memory

d State information created/updated at wire speed

NSD-Intel -- Chapt. 9 27 2004

Two Conceptual Bindings

classification: packet → flow

forwarding: flow → packet disposition

d Classification binding is usually 1-to-1

d Forwarding binding can be 1-to-1 or many-to-1

NSD-Intel -- Chapt. 9 28 2004

Flow Identification

d Connection-oriented network

– Per-flow SVC can be created on demand

– Flow ID equals connection ID

d Connectionless network

– Flow ID used internally

– Each flow ID mapped to (next hop, interface)

NSD-Intel -- Chapt. 9 29 2004

Relationship Of Classification And Forwarding
In A Connection-Oriented Network

In a connection-oriented network, flow identifiers assigned by
classification can be chosen to match connection identifiers
used by the underlying network. Doing so makes forwarding
more efficient by eliminating one binding.

NSD-Intel -- Chapt. 9 30 2004

Forwarding In A Connectionless Network

d Route for flow determined when flow created

d Indexing used in place of route lookup

d Flow identifier corresponds to index of entry in forwarding
cache

d Forwarding cache must be changed when route changes

NSD-Intel -- Chapt. 9 31 2004

Second Generation Network Systems

d Designed for greater scale

d Use classification instead of demultiplexing

d Decentralized architecture

– Additional computational power on each NIC

– NIC implements classification and forwarding

d High-speed internal interconnection mechanism

– Interconnects NICs

– Provides fast data path

NSD-Intel -- Chapt. 9 32 2004

Illustration Of Second Generation
Network Systems Architecture

Forward-

ing

Class-

ification

Layer 1 & 2

(framing)

Forward-

ing

Class-

ification

Layer 1 & 2

(framing)fast data path

Control
And

Exceptions

Interface1 Interface2Standard CPU

NSD-Intel -- Chapt. 9 33 2004

Classification And Forwarding Chips

d Sold by vendors

d Implement hardware classification and forwarding

d Typical configuration: rule sets given in ROM

NSD-Intel -- Chapt. 9 34 2004

Summary

d Classification faster than demultiplexing

d Can be implemented in hardware or software

d Dynamic classification

– Uses packet contents to assign flows

– Requires state information

NSD-Intel -- Chapt. 9 35 2004

Questions?

XI

Network Processors: Motivation And Purpose

NSD-Intel -- Chapt. 11 1 2004

Second Generation Network Systems

d Concurrent with ATM development (early 1990s)

d Purpose: scale to speeds faster than single CPU capacity

d Features

– Use classification instead of demultiplexing

– Decentralized architecture to offload CPU

– Design optimized for fast data path

NSD-Intel -- Chapt. 11 2 2004

Second Generation Network Systems
(details)

d Multiple network interfaces

– Powerful NIC

– Private buffer memory

d High-speed hardware interconnects NICs

d General-purpose processor only handles exceptions

d Sufficient for medium speed interfaces (100 Mbps)

NSD-Intel -- Chapt. 11 3 2004

Reminder: Protocol Processing In
Second Generation Network Systems

Forward-
ing

Class-
ification

Layer 1 & 2
(framing)

Forward-
ing

Class-
ification

Layer 1 & 2
(framing)fast data path

Control
And

Exceptions

Interface1 Interface2Standard CPU

d NIC handles most of layers 1 - 3

d Fast-path forwarding avoids CPU completely

NSD-Intel -- Chapt. 11 4 2004

Third Generation Network Systems

d Late 1990s

d Functionality partitioned further

d Additional hardware on each NIC

d Almost all packet processing off-loaded from CPU

NSD-Intel -- Chapt. 11 5 2004

Third Generation Design

d NIC contains

– ASIC hardware

– Embedded processor plus code in ROM

d NIC handles

– Classification

– Forwarding

– Traffic policing

– Monitoring and statistics

NSD-Intel -- Chapt. 11 6 2004

Embedded Processor

d Two possibilities

– Complex Instruction Set Computer (CISC)

– Reduced Instruction Set Computer (RISC)

d RISC used often because

– Higher clock rates

– Smaller

– Lower power consumption

NSD-Intel -- Chapt. 11 7 2004

Purpose Of Embedded Processor
In Third Generation Systems

Third generation systems use an embedded processor to handle
layer 4 functionality and exception packets that cannot be
forwarded across the fast path. An embedded processor
architecture is chosen because ease of implementation and
amenability to change are more important than speed.

NSD-Intel -- Chapt. 11 8 2004

Protocol Processing In Third Generation Systems

Traffic Mgmt. (ASIC)

Other processing

switching fabric
Layers 1 & 2

Layer 4

Embedded
processor

Layer 3 & class.
ASIC

Layers 1 & 2

Layer 4

Embedded
Processor

Layer 3 & class.
ASIC

Interface1 Interface2standard CPU

d Special-purpose ASICs handle lower layer functions

d Embedded (RISC) processor handles layer 4

d CPU only handles low-demand processing

NSD-Intel -- Chapt. 11 9 2004

Are Third Generation Systems Sufficient?

NSD-Intel -- Chapt. 11 10 2004

Are Third Generation Systems Sufficient?

d Almost

NSD-Intel -- Chapt. 11 10 2004

Are Third Generation Systems Sufficient?

d Almost . . . but not quite.

NSD-Intel -- Chapt. 11 10 2004

Problems With Third Generation Systems

d High cost

d Long time to market

d Difficult to simulate/test

d Expensive and time-consuming to change

– Even trivial changes require silicon respin

– 18-20 month development cycle

d Little reuse across products

d Limited reuse across versions

NSD-Intel -- Chapt. 11 11 2004

Problems With Third Generation Systems
(continued)

d No consensus on overall framework

d No standards for special-purpose support chips

d Requires in-house expertise (ASIC designers)

NSD-Intel -- Chapt. 11 12 2004

A Fourth Generation

d Goal: combine best features of first generation and third
generation systems

– Flexibility of programmable processor

– High speed of ASICs

d Technology called network processors

NSD-Intel -- Chapt. 11 13 2004

Definition Of A Network Processor

A network processor is a special-purpose, programmable
hardware device that combines the low cost and flexibility of a
RISC processor with the speed and scalability of custom silicon
(i.e., ASIC chips). Network processors are building blocks used
to construct network systems.

NSD-Intel -- Chapt. 11 14 2004

Network Processors: Potential Advantages

d Relatively low cost

d Straightforward hardware interface

d Facilities to access

– Memory

– Network interface devices

d Programmable

d Ability to scale to higher

– Data rates

– Packet rates

NSD-Intel -- Chapt. 11 15 2004

Network Processors: Potential Advantages

d Relatively low cost

d Straightforward hardware interface

d Facilities to access

– Memory

– Network interface devices

d Programmable

d Ability to scale to higher

– Data rates

– Packet rates

NSD-Intel -- Chapt. 11 15 2004

The Promise Of Programmability

d For producers

– Lower initial development costs

– Reuse software in later releases and related systems

– Faster time-to-market

– Same high speed as ASICs

d For consumers

– Much lower product cost

– Inexpensive (firmware) upgrades

NSD-Intel -- Chapt. 11 16 2004

Choice Of Instruction Set

d Programmability alone insufficient

d Also need higher speed

d Should network processors have

– Instructions for specific protocols?

– Instructions for specific protocol processing tasks?

d Choices difficult

NSD-Intel -- Chapt. 11 17 2004

Instruction Set

d Need to choose one instruction set

d No single instruction set best for all uses

d Other factors

– Power consumption

– Heat dissipation

– Cost

d More discussion later in the course

NSD-Intel -- Chapt. 11 18 2004

Scalability

d Two primary techniques

– Parallelism

– Data pipelining

d Questions

– How many processors?

– How should they be interconnected?

d More discussion later

NSD-Intel -- Chapt. 11 19 2004

Costs And Benefits Of Network Processors

d Currently

– More expensive than conventional processor

– Slower than ASIC design

d Where do network processors fit?

– Somewhere in the middle

NSD-Intel -- Chapt. 11 20 2004

Where Network Processors Fit

Increasing cost

Increasing
Performance

Software
On Conventional

Processor

ASIC
Designs

Network
Processor
Designs

?

?

d Network processors: the middle ground

NSD-Intel -- Chapt. 11 21 2004

Achieving Higher Speed

d What is known

– Must partition packet processing into separate functions

– To achieve highest speed, must handle each function
with separate hardware

d What is unknown

– Exactly what functions to choose

– Exactly what hardware building blocks to use

– Exactly how building blocks should be interconnected

NSD-Intel -- Chapt. 11 22 2004

Variety Of Network Processors

d Economics driving a gold rush

– NPs will dramatically lower production costs for
network systems

– A good NP design potentially worth lots of $$

d Result

– Wide variety of architectural experiments

– Wild rush to try yet another variation

NSD-Intel -- Chapt. 11 23 2004

An Interesting Observation

d System developed using ASICs

– High development cost ($1M)

– Lower cost to replicate

d System developed using network processors

– Lower development cost

– Higher cost to replicate

d Conclusion: amortized cost favors ASICs for most high-
volume systems

NSD-Intel -- Chapt. 11 24 2004

Summary

d Third generation network systems have embedded processor
on each NIC

d Network processor is programmable chip with facilities to
process packets faster than conventional processor

d Primary motivation is economic

– Lower development cost than ASICs

– Higher processing rates than conventional processor

NSD-Intel -- Chapt. 11 25 2004

Questions?

XII

The Complexity Of
Network Processor Design

NSD-Intel -- Chapt. 12 1 2004

How Should A Network Processor
Be Designed?

d Depends on

– Operations network processor will perform

– Role of network processor in overall system

NSD-Intel -- Chapt. 12 2 2004

Goals

d Generality

– Sufficient for all protocols

– Sufficient for all protocol processing tasks

– Sufficient for all possible networks

d High speed

– Scale to high bit rates

– Scale to high packet rates

d Elegance

– Minimality, not merely comprehensiveness

NSD-Intel -- Chapt. 12 3 2004

The Key Point

A network processor is not designed to process a specific
protocol or part of a protocol. Instead, designers seek a
minimal set of instructions that are sufficient to handle an
arbitrary protocol processing task at high speed.

NSD-Intel -- Chapt. 12 4 2004

Network Processor Design

d To understand network processors, consider problem to be
solved

– Protocols being implemented

– Packet processing tasks

NSD-Intel -- Chapt. 12 5 2004

Packet Processing Functions

d Error detection and correction

d Traffic measurement and policing

d Frame and protocol demultiplexing

d Address lookup and packet forwarding

d Segmentation, fragmentation, and reassembly

d Packet classification

d Traffic shaping

d Timing and scheduling

d Queueing

d Security: authentication and privacy

NSD-Intel -- Chapt. 12 6 2004

Questions

d Does our list of functions encompass all protocol
processing?

d Which function(s) are most important to optimize?

d How do the functions map onto hardware units in a typical
network system?

d Which hardware units in a network system can be replaced
with network processors?

d What minimal set of instructions is sufficiently general to
implement all functions?

NSD-Intel -- Chapt. 12 7 2004

Division Of Functionality

d Partition problem to reduce complexity

d Basic division into two parts

d Functions applied when packet arrives known as

ingress processing

d Functions applied when packet leaves known as

egress processing

NSD-Intel -- Chapt. 12 8 2004

Ingress Processing

d Security and error detection

d Classification or demultiplexing

d Traffic measurement and policing

d Address lookup and packet forwarding

d Header modification and transport splicing

d Reassembly or flow termination

d Forwarding, queueing, and scheduling

NSD-Intel -- Chapt. 12 9 2004

Egress Processing

d Addition of error detection codes

d Address lookup and packet forwarding

d Segmentation or fragmentation

d Traffic shaping

d Timing and scheduling

d Queueing and buffering

d Output security processing

NSD-Intel -- Chapt. 12 10 2004

Illustration Of Packet Flow

Ingress Processing

d Error and security checking
d Classification or demultiplexing
d Traffic measurement and policing
d Address lookup and packet forwarding
d Header modification and transport splicing
d Reassembly or flow termination
d Forwarding, queueing, and scheduling

Egress Processing

d Addition of error detection codes
d Address lookup and packet forwarding
d Segmentation or fragmentation
d Traffic shaping
d Timing and scheduling
d Queueing and buffering
d Output security Processing

P
H
Y
S
I
C
A
L

I
N
T
E
R
F
A
C
E

F
A
B
R
I
C

packets
arrive

packets
leave

NSD-Intel -- Chapt. 12 11 2004

A Note About Scalability

Unlike a conventional processor, scalability is essential for
network processors. To achieve maximum scalability, a
network processor offers a variety of special-purpose functional
units, allows parallel or pipelined execution, and operates in a
distributed environment.

NSD-Intel -- Chapt. 12 12 2004

How Will Network Processors
Be Used?

d For ingress processing only?

d For egress processing only?

d For combination?

NSD-Intel -- Chapt. 12 13 2004

How Will Network Processors
Be Used?

d For ingress processing only?

d For egress processing only?

d For combination?

d Answer: No single role

NSD-Intel -- Chapt. 12 13 2004

Potential Architectural Roles
For Network Processor

d Replacement for a conventional CPU

d Augmentation of a conventional CPU

d On the input path of a network interface card

d Between a network interface card and central interconnect

d Between central interconnect and an output interface

d On the output path of a network interface card

d Attached to central interconnect like other ports

NSD-Intel -- Chapt. 12 14 2004

An Interesting Potential
Role For Network Processors

In addition to replacing elements of a traditional third
generation architecture, network processors can be attached
directly to a central interconnect and used to implement stages
of a macroscopic data pipeline. The interconnect allows
forwarding among stages to be optimized.

NSD-Intel -- Chapt. 12 15 2004

Conventional Processor Design

d Design an instruction set, S

d Build an emulator/simulator for S in software

d Build a compiler that translates into S

d Compile and emulate example programs

d Compare results to

– Extant processors

– Alternative designs

NSD-Intel -- Chapt. 12 16 2004

Network Processor Emulation

d Can emulate low-level logic (e.g., Verilog)

d Software implementation

– Slow

– Cannot handle real packet traffic

d FPGA implementation

– Expensive and time-consuming

– Difficult to make major changes

NSD-Intel -- Chapt. 12 17 2004

Network Processor Design

d Unlike conventional processor design

d No existing code base

d No prior hardware experience

d Each design differs

NSD-Intel -- Chapt. 12 18 2004

Hardware And Software Design

Because a network processor includes many low-level hardware
details that require specialized software, the hardware and
software designs are codependent; software for a network
processor must be created along with the hardware.

NSD-Intel -- Chapt. 12 19 2004

Summary

d Protocol processing divided into ingress and egress
operations

d Network processor design is challenging because

– Desire generality and efficiency

– No existing code base

– Software designs evolving with hardware

NSD-Intel -- Chapt. 12 20 2004

Questions?

XIII

Network Processor Architectures

NSD-Intel -- Chapt. 13 1 2004

Architectural Explosion

An excess of exuberance and a lack of experience have
produced a wide variety of approaches and architectures.

NSD-Intel -- Chapt. 13 2 2004

Principle Components

d Processor hierarchy

d Memory hierarchy

d Internal transfer mechanisms

d External interface and communication mechanisms

d Special-purpose hardware

d Polling and notification mechanisms

d Concurrent and parallel execution support

d Programming model and paradigm

d Hardware and software dispatch mechanisms

NSD-Intel -- Chapt. 13 3 2004

Processing Hierarchy

d Consists of hardware units

d Performs various aspects of packet processing

d Includes onboard and external processors

d Individual processor can be

– Programmable

– Configurable

– Fixed

NSD-Intel -- Chapt. 13 4 2004

Typical Processor Hierarchy

Level Processor Type Programmable? On Chip?22

8 General purpose CPU yes possibly
7 Embedded processor yes typically
5 I/O processor yes typically
6 Coprocessor no typically
4 Fabric interface no typically
3 Data transfer unit no typically
2 Framer no possibly
1 Physical transmitter no possibly

NSD-Intel -- Chapt. 13 5 2004

Memory Hierarchy

d Memory measurements

– Random access latency

– Sequential access latency

– Throughput

– Cost

d Can be

– Internal

– External

NSD-Intel -- Chapt. 13 6 2004

Typical Memory Hierarchy

Memory Type Rel. Speed Approx. Size On Chip?22

Control store 100 103 yes
G.P. Registers† 90 102 yes
Onboard Cache 40 103 yes
Onboard RAM 7 103 yes
Static RAM 2 107 no
Dynamic RAM 1 108 no

NSD-Intel -- Chapt. 13 7 2004

Internal Transfer Mechanisms

d Internal bus

d Hardware FIFOs

d Transfer registers

d Onboard shared memory

NSD-Intel -- Chapt. 13 8 2004

External Interface And
Communication Mechanisms

d Standard and specialized bus interfaces

d Memory interfaces

d Direct I/O interfaces

d Switching fabric interface

NSD-Intel -- Chapt. 13 9 2004

Example Interfaces

d System Packet Interface Level 3 or 4 (SPI-3 or SPI-4)

d SerDes Framer Interface (SFI)

d CSIX fabric interface

Note: The Optical Internetworking Forum (OIF) controls the SPI and SFI
standards.

NSD-Intel -- Chapt. 13 10 2004

Polling And Notification Mechanisms

d Handle asynchronous events

– Arrival of packet

– Timer expiration

– Completion of transfer across the fabric

d Two paradigms

– Polling

– Notification

NSD-Intel -- Chapt. 13 11 2004

Concurrent Execution Support

d Improves overall throughput

d Multiple threads of execution

d Processor switches context when a thread blocks

NSD-Intel -- Chapt. 13 12 2004

Support For Concurrent Execution

d Embedded processor

– Standard operating system

– Context switching in software

d I/O processors

– No operating system

– Hardware support for context switching

– Low-overhead or zero-overhead

NSD-Intel -- Chapt. 13 13 2004

Concurrent Support Questions

d Local or global threads (does thread execution span
multiple processors)?

d Forced or voluntary context switching (are threads
preemptable)?

NSD-Intel -- Chapt. 13 14 2004

Hardware And Software Dispatch Mechanisms

d Refers to overall control of parallel operations

d Dispatcher

– Chooses operation to perform

– Assigns to a processor

NSD-Intel -- Chapt. 13 15 2004

Implicit And Explicit Parallelism

d Explicit parallelism

– Exposes parallelism to programmer

– Requires software to understand parallel hardware

d Implicit parallelism

– Hides parallel copies of functional units

– Software written as if single copy executing

NSD-Intel -- Chapt. 13 16 2004

Architecture Styles, Packet Flow,
And Clock Rates

d Embedded processor plus fixed coprocessors

d Embedded processor plus programmable I/O processors

d Parallel (number of processors scales to handle load)

d Pipeline processors

d Dataflow

NSD-Intel -- Chapt. 13 17 2004

Embedded Processor Architecture

f(); g(); h()

d Single processor

– Handles all functions

– Passes packet on

d Known as run-to-completion

NSD-Intel -- Chapt. 13 18 2004

Parallel Architecture

f(); g(); h()

f(); g(); h()

f(); g(); h()

...

coordination
mechanism

d Each processor handles 1/N of total load

NSD-Intel -- Chapt. 13 19 2004

Pipeline Architecture

f () g () h ()

d Each processor handles one function

d Packet moves through ‘‘pipeline’’

NSD-Intel -- Chapt. 13 20 2004

Clock Rates

d Embedded processor runs at > wire speed

d Parallel processor runs at < wire speed

d Pipeline processor runs at wire speed

NSD-Intel -- Chapt. 13 21 2004

Software Architecture

d Central program that invokes coprocessors like subroutines

d Central program that interacts with code on intelligent,
programmable I/O processors

d Communicating threads

d Event-driven program

d RPC-style (program partitioned among processors)

d Pipeline (even if hardware does not use pipeline)

d Combinations of the above

NSD-Intel -- Chapt. 13 22 2004

Example Uses Of Programmable Processors

General purpose CPU
Highest level functionality
Administrative interface
System control
Overall management functions
Routing protocols

Embedded processor
Intermediate functionality
Higher-layer protocols
Control of I/O processors
Exception and error handling
High-level ingress (e.g., reassembly)
High-level egress (e.g., traffic shaping)

I/O processor
Basic packet processing
Classification
Forwarding
Low-level ingress operations
Low-level egress operations

NSD-Intel -- Chapt. 13 23 2004

Using The Processor Hierarchy

To maximize performance, packet processing tasks should be
assigned to the lowest level processor capable of performing
the task.

NSD-Intel -- Chapt. 13 24 2004

Packet Flow Through The Hierarchy

Standard CPU (external)

Embedded (RISC) Processor

I/O Processor

Lower Levels Of Processor Hierarchy

data
arrives

data
leaves

data to / from
programmable processors

small amount
of data

almost no
data

NSD-Intel -- Chapt. 13 25 2004

Summary

d Network processor architectures characterized by

– Processor hierarchy

– Memory hierarchy

– Internal buses

– External interfaces

– Special-purpose functional units

– Support for concurrent or parallel execution

– Programming model

– Dispatch mechanisms

NSD-Intel -- Chapt. 13 26 2004

Questions?

XVII

Overview Of The Intel Network Processor

NSD-Intel -- Chapt. 17 1 2004

An Example Network Processor

d We will

– Choose one example

– Examine the hardware

– Gain first-hand experience with software

d The choice: Intel

NSD-Intel -- Chapt. 17 2 2004

Intel Network Processor Terminology

d Intel Exchange Architecture (IXA)

– Broad reference to architecture

– Both hardware and software

– Control plane and data plane

d Intel Exchange Processor (IXP)

– Network processor that implements IXA

NSD-Intel -- Chapt. 17 3 2004

Intel IXP2xxx

d Refers to second generation IXP chip

d Several models available

Model Intended Typical Data Support For
Number Use Input Rate cryptography222

IXP2400 Access & edge OC-12 to OC-48 2.5 Gbps no
IXP2800 Edge & core OC-48 to OC-192 10.0 Gbps no
IXP2850 Edge & core OC-48 to OC-192 10.0 Gbps yes

d Differences in speed, power consumption, parallelism,
interfaces, packaging

d Term IXP2xxx refers to any model

NSD-Intel -- Chapt. 17 4 2004

IXP2xxx Features

d One embedded RISC processor

d Eight to sixteen programmable packet processors

d Multiple, independent onboard buses

d Processor synchronization mechanisms

d Shared and non-shared onboard memory

d One low-speed serial line interface

d Multiple interfaces for external memories

d Multiple interfaces for external I/O buses

d Coprocessor for hash computation and cryptography

d Other functional units

NSD-Intel -- Chapt. 17 5 2004

IXP2xxx External Connections

IXP2xxx
chip

SRAM

coprocessor

DRAM

FLASH

serial
line

PCI bus

receive bus transmit bus

SRAM
buses

DRAM
bus

optional host connection

High-speed
I/O buses

Slowport

NSD-Intel -- Chapt. 17 6 2004

IXP2400 External Connection Speeds

Type Bus Width Clock Rate Data Rate22

Serial line (NA) (NA) 38.4 Kbps
PCI bus 64 bits 66 MHz 2.2 Gbps
MSF interface 32 bits in and out unspecified unspecified
DDR DRAM 64 bits 150 MHz 2.4 GBps
QDR SRAM 32 bits 200 MHz 1.6 GBps

†GBps abbreviates Giga Bytes per second.

d Notes

– MBps abbreviates Mega Bytes per second

– IXP2800 operates at higher speed

NSD-Intel -- Chapt. 17 7 2004

IXP2xxx Internal Units

Quantity Component Purpose222

1 Embedded RISC Control, higher layer protocols,
processor and exceptions

8/16 Packet processing I/O, basic packet processing,
engines and packet forwarding

1+ SRAM access unit Coordinate access to the
external SRAM bus

1+ DRAM access unit Coordinate access to the
external DRAM bus

1 Media / Switch Fabric Coordinate access to the
access unit external I / O devices

1 PCI bus access unit Coordinate access to the
external PCI bus

1 Hash unit Compute a hash function for
high-speed lookup

0 or 1 Crypto unit Compute cryptographic encoding
for secure transfer

several Onboard buses Internal control and data transfer

NSD-Intel -- Chapt. 17 8 2004

IXP2xxx Internal Architecture

IXP2xxx chip

SRAM

coprocessor

DRAM

FLASH

DRAM
access

SRAM
access

Slowport
access

scratch
memory

Embedded
RISC

processor
(Xscale)

Microengine 1

Microengine 2

Microengine 3

...

Microengine N

PCI access

MSF
access

serial
line

PCI bus

receive bus transmit bus

SRAM
buses

DRAM
bus

multiple,
independent

internal
buses

optional host connection

High-speed
I/O buses

Slowport

NSD-Intel -- Chapt. 17 9 2004

Processors On The IXP2xxx

Processor Type Onboard? Programmable?22

General-Purpose Processor no yes
Embedded RISC Processor yes yes
I/O Processors yes yes
Coprocessors yes no
Physical Interfaces no no

NSD-Intel -- Chapt. 17 10 2004

IXP2xxx Memory Hierarchy

Memory Maximum On Typical
Type Size Chip? Use22

GP Registers 256 (2 banks) yes Intermediate computation
Inst. Cache 32 Kbytes yes Recently used instructions
Data Cache 32 Kbytes yes Recently used data
Mini Cache 2 Kbytes yes Data that is reused once
Write buffer unspecified yes Write operation buffer
Local memory 2560 bytes / µeng. yes Register spills and caching
Scratchpad 16 Kbytes yes IPC and synchronization
Inst. Store 4 Kbytes / µeng. yes Microengine instructions
FlashROM unspecified no Bootstrap
SRAM 64 Mbytes no Tables or packet headers
DRAM 2 Gbytes no Packet storage

NSD-Intel -- Chapt. 17 11 2004

IXP2xxx Memory Characteristics

Memory Access Unit Relative Special
Type (bytes) Access Time Features222

local 4 1 accessed using the
LM_ADDR registers

Scratch 4 10 synchronization via
atomic read-modify-write
support for IPC (rings)
push/pull reflector

mode

SRAM 4 14 follows QDR specification
atomic operations
support for queues and rings
bit manipulation

DRAM 8 20 connects to: Xscale,
microengines, and
PCI bus master

NSD-Intel -- Chapt. 17 12 2004

Memory Access

d Each memory specifies minimum access unit

– Two-byte unit is word

– Four-byte unit is longword

– Eight-byte unit is quadword

d When program accesses item in memory, physical memory
system fetches entire access unit

NSD-Intel -- Chapt. 17 13 2004

The Point About Memory Acceess

The underlying memory is organized into data units of words or
longwords. To achieve optimal performance, programmers
must understand the memory organization and allocate items to
minimize access times.

NSD-Intel -- Chapt. 17 14 2004

Example Of Complexity: PCI Access Unit

PCI bus access unit

. ...
..
..
..
..
..
..
..
..
..

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...Master interface Command Bus Master

Slave
Interface

Core interface

Command Bus Slave

initiator
addr. FIFO

initiator
read FIFO

initiator
write FIFO

PCI
config.

target
read FIFO

target
write FIFO

target
addr. FIFO

PCI bus
host fcns.

Master
Address

Reg.
DMA

read/write buf.
Direct
Buffer

Direct
interface

DMA SRAM
interface

DMA DRAM
interface

PCI
CSRs

Slave
Write
Buffer

Slave
Address
Register

Slave
interface

DRAM Data
interface

SRAM Data
interface

Address
interface

pull
SRAM

push
bus

cmd.
bus

cmd.
bus

pull
SRAM

push
bus

pull
DRAM

push
bus

to PCI bus

NSD-Intel -- Chapt. 17 15 2004

Summary

d We will use Intel IXP2xxx as example

d IXP2xxx offers

– Embedded processor plus parallel packet processors

– Connections to external memories and buses

NSD-Intel -- Chapt. 17 16 2004

Questions?

XX

Reference System
And

Software Development Kit
(ENP-2611, SDK)

NSD-Intel -- Chapt. 20 1 2004

Reference System

d Provided by vendor

d Targeted at potential customers

d Usually includes

– Hardware testbed

– Development software

– Simulator or emulator

– Download and bootstrap software

– Reference implementations

NSD-Intel -- Chapt. 20 2 2004

Intel Reference Hardware

d Single-board network processor testbed

d Plugs into PCI bus on a PC

d Part number ENP-2611

d Internal code name Mt. Hood

d Manufactured by Radisys Corporation

NSD-Intel -- Chapt. 20 3 2004

Items On The Intel
ENP-2611 Reference System

Quantity or Size Item22

1 IXP2400 network processor (600MHz)
8 Mbytes of QDR-SRAM memory

256 Mbytes of DDR-SDRAM memory
16 Mbytes of Flash ROM memory
1 SPI-3 bridge FPGA to connect to:

– PM3386/7 Gigabit Ethernet MACs
– MSF running in SPI-3 mode

3 10/100/1000 optical Ethernet ports
1 10/100 Ethernet management port
1 Serial interface (on the XScale)
1 PCI bus interface

NSD-Intel -- Chapt. 20 4 2004

Intel Reference Software

d Known as Software Development Kit (SDK)

d Runs on PC

d Includes:

Software Purpose222

C compiler Compile C programs for the XScale
MicroC compiler Compile C programs for the microengines
Assembler Assemble programs for the microengines
Simulator Simulate an IXP2xxx for debugging (Windows)
Resource Manager XScale kernel module used to control

and communicate with hardware
Workbench Server Load software into the network processor
Workbench Backend Svr Remote (Windows) application that controls

and communicates with the network processor
Bootstrap Start the network processor running
Reference Code Example programs for the IXP2xxx that show

how to implement basic functions

NSD-Intel -- Chapt. 20 5 2004

Operating System On XScale

d XScale processor powerful enough to run an OS

d Version of Embedded Linux used that supports

– Telnet server that allows remote login

– Shell that allows a user to run commands

– Access to a remote file system via NFS

– Other servers that are used for control and status

NSD-Intel -- Chapt. 20 6 2004

0perating System On External Host

d Cross-development tools run on external host (PC)

– Some SDK compilers require Linux

– Workbench Backend Server (WB Backend Server) used
for download runs under Windows

d Site can avoid using Workbench software

NSD-Intel -- Chapt. 20 7 2004

External File Access And Storage

d DRAM accessed via DRAM bus

d SRAM and Flash accessed via SRAM bus

d Ethernet ports accessed via MSF

d Code and data downloaded via control Ethernet

d NFS accessed via control Ethernet

d XScale accessed via

– Serial line (console)

– Telnet

NSD-Intel -- Chapt. 20 8 2004

Basic Paradigm

d Build software on conventional computer

d Load into reference system

d Test / measure results

NSD-Intel -- Chapt. 20 9 2004

Bootstrapping Procedure

1. Restarting the ENP-2611 causes the boot manager on the
XScale to load and run a copy of RedBoot program out of
the Flash ROM.

2. The RedBoot program running on the XScale sends a
BOOTP request to obtain an IP address for the management
Ethernet port.

3. The RedBoot program running on the XScale uses the IP
address obtained via BOOTP to contact a TFTP server and
download a copy of the Linux kernel image.

4. The Linux kernel boots and uses NFS to mount a remote file
system.

5. After the kernel is operational, a script runs that starts a
telnet server on the management interface as well as other
servers that accessible to external hosts.

NSD-Intel -- Chapt. 20 10 2004

Starting Software

1. Compile code for the XScale and microengines, and place
the resulting files in a directory, D, on the computer that runs
the NFS server. The Intel SDK uses the terms core
component and microblock for the compiled files.

2. Copy the entire contents of directory D to the read-write
public download directory, W, that has been mounted by the
testbed. (This step is not necessary if only one programmer
has access to the testbed.)

3. Run a telnet client program on the host that forms a
connection to the testbed system, and log onto the XScale.

4. Load a set of Linux kernel modules, including microengine
drivers, the Resource Manager library, and a module to
configure the SPI-3 interface.

NSD-Intel -- Chapt. 20 11 2004

Starting Software
(continued)

5. Load a module that reads microblock code and places the
code into microengines. Note that no such module comes
with the SDK; a programmer must write the module.
However, the module does not need to access hardware
directly because the Resource Manager can be used to load
code into microengines.

6. Start the programs on the XScale that were compiled in Step
1.

NSD-Intel -- Chapt. 20 12 2004

Summary

d Reference systems

– Provided by vendor

– Targeted at potential customers

– Usually include

* Hardware testbed

* Cross-development software

* Download and bootstrap software

* Reference implementations

NSD-Intel -- Chapt. 20 13 2004

Questions?

XVIII

Embedded RISC Processor (XScale Core)

NSD-Intel -- Chapt. 18 1 2004

XScale Role

IXP2xxx IXP2xxxIXP2xxxIXP2xxx

GPP GPP

(a) (b)

General-Purpose
Processor

Embedded
RISC

Processors

physical
interfaces

d (a) Single IXP2xxx

d (b) Multiple IXP2xxxs

d Role of XScale differs

NSD-Intel -- Chapt. 18 2 2004

Tasks That Can Be Performed
By XScale

d Bootstrapping

d Exception handling

d Higher-layer protocol processing

d Interactive debugging

d Diagnostics and logging

d Memory allocation

d Application programs (if needed)

d User interface and/or interface to the GPP

d Control of packet processors

d Other administrative functions

NSD-Intel -- Chapt. 18 3 2004

XScale Characteristics

d Reduced Instruction Set Computer (RISC)

d Thirty-two bit arithmetic

d Extra functionality can be provided via a coprocessor

d Byte addressable memory

d Virtual memory support

d Built-in serial port

d Facilities for a kernelized operating system

d Performance monitoring unit

NSD-Intel -- Chapt. 18 4 2004

Arithmetic

d XScale is configurable in two modes

– Big endian

– Little endian

d Choice made at run-time

NSD-Intel -- Chapt. 18 5 2004

Performance Monitoring Unit

d Can measure

– Instruction cache miss rate

– Translation Lookaside Buffer (TLB) miss rate

– Stalls in the instruction pipeline

– Number of branches initiated by software

d Useful for program tuning

NSD-Intel -- Chapt. 18 6 2004

XScale Memory Organization

d Single, uniform address space

d Includes memories and devices

d Byte addressable

NSD-Intel -- Chapt. 18 7 2004

XScale Address Space

ContentsAddress

PCI memory
(1/2 GByte)

CSRs and Other
(1/2 GByte)

SRAM
(1 GByte)

DRAM
and

Slowport / Flash
ROM

(2 GBytes)

FFFF FFFF

E000 0000

C000 0000

8000 0000

0000 0000

NSD-Intel -- Chapt. 18 8 2004

Shared Memory And Address Translation

d Memory shared with microengines

d Microengines use separate physical address spaces

NSD-Intel -- Chapt. 18 9 2004

Consequence For Programmers

Because the Xscale and packet processors do not use the same
memory architecture, linked lists and other data structures in
which pointers cross from one memory to another do not make
sense in in the microengine address space.

NSD-Intel -- Chapt. 18 10 2004

Internal Peripheral Units

d One UART

d Four 32-bit countdown timers (one watchdog)

d Eight General-Purpose I/O (GPIO) pins

d One Slowport interface

NSD-Intel -- Chapt. 18 11 2004

Summary

d Embedded processor on IXP2xxx is XScale

d XScale addressing

– Single, uniform address space

– Includes all memories

– Byte addressable

NSD-Intel -- Chapt. 18 12 2004

Questions?

XIX

Packet Processor Hardware
(Microengines)

NSD-Intel -- Chapt. 19 1 2004

Microengines

d Parallel hardware units

– Eight on IXP2400

– Sixteen on IXP28x0

d Handle fast data path processing

d Known as microengine version 2 MEv2)

NSD-Intel -- Chapt. 19 2 2004

Role Of Microengines

d Packet ingress from physical layer hardware

d Checksum verification

d Header processing and classification

d Packet buffering in memory

d Table lookup and forwarding

d Header modification

d Checksum computation

d Packet egress to physical layer hardware

NSD-Intel -- Chapt. 19 3 2004

Microengine Characteristics

d Programmable microcontroller

d RISC design

d Two hundred fifty-six general-purpose registers

d Five hundred twelve transfer registers

d One hundred twenty-eight Next Neighbor registers

d Hardware support for four threads and context switching

d Six hundred forty words of local memory

d Sixteen entry CAM with thirty-two bits per entry

NSD-Intel -- Chapt. 19 4 2004

Microengine Characteristics
(continued)

d Control of an Arithmetic Logic Unit (ALU)

d Direct access to various functional units

d A unit to compute a Cyclic Redundancy Check (CRC)

NSD-Intel -- Chapt. 19 5 2004

Microengine Level

d Not a typical CPU

d Does not contain native instruction for each operation

d Controls other units on the chip

d Really a microsequencer

NSD-Intel -- Chapt. 19 6 2004

Consequence Of Microsequencing

Because it functions as a microsequencer, a microengine does
not provide native hardware instructions for arithmetic
operations, nor does it provide addressing modes for direct
memory access. Instead, a program running on a microengine
controls and uses functional units on the chip to access memory
and perform operations.

NSD-Intel -- Chapt. 19 7 2004

Microengine Instruction Set (Part 1)

InstructionDescription

General instructions (Arithmetic, Rotate, And Shift)

ALU

ALU_SHF

ASR

BYTE_ALIGN_BE, BYTE_ALIGN_LE

CRC_LE, CRC_BE

DBL_SHF

MUL_STEP

FFS

POP_COUNT

IMMED

IMMED_B0 through IMMED_B3

IMMED_W0, IMMED_W1

LD_FIELD, LD_FIELD_W_CLR

LOAD_ADDR

LOCAL_CSR_RD, LOCAL_CSR_WR

NOP

Perform an ALU operation

Perform an ALU operation and shift

Perform an arithmetic right shift

Concatenate registers and select bytes

Compute CRC (big or little endian)

Concatenate and shift two longwords

Multiply two unsigned integers

Find position of LSB in register

Count 1 bits in a register

Load immediate 16-bit value to register

Load immediate byte to a field

Load immediate 16-bit word to a field

Load bytes to specified fields

Load instruction address

Read or write local microengine CSRs

No operation

NSD-Intel -- Chapt. 19 8 2004

Microengine Instruction Set (Part 2)

InstructionDescription

Branch and Jump Instructions

BCC

BR

BR_BCLR, BR_BSET

BR=BYTE, BR!=BYTE

BR=CTX, BR!=CTX

BR_INP_STATE, BR_!INP_STATE

BR_SIGNAL, BR_!SIGNAL

JUMP

RTN

Branch on condition code

Branch unconditionally

Branch if bit clear or set

Branch if byte equal or not equal to literal

Branch on current context

Branch on event state

Branch if signal deasserted

Jump to label

Return from branch or jump

NSD-Intel -- Chapt. 19 9 2004

Microengine Instruction Set (Part 3)

InstructionDescription

Content Addressable Memory (CAM) Instructions

CAM_CLEAR

CAM_WRITE_STATE

CAM_READ_TAG

CAM_READ_STATE

CAM_LOOKUP

CAM_WRITE

Clear all entries in local CAM

Write state bits into specified CAM entry

Read tag for specified CAM entry

Read state bits for specified CAM entry

Search local CAM for tag value

Write tag value for specified CAM entry

NSD-Intel -- Chapt. 19 10 2004

Microengine Instruction Set (Part 4)

Instruction Description

I/O And Context Swap Instructions

DRAM (read and write)
DRAM (RBUF and TBUF)
CAP (CSR addressing)
CAP (calculated addressing)
CAP (reflect)
CTX_ARB
HALT
HASH
MSF
PCI
SCRATCH (read and write)
SCRATCH (atomic operation)
SCRATCH (ring operation)
SRAM (read and write)
SRAM (atomic operation)
SRAM (CSR)
SRAM (read queue descriptor)
SRAM (write queue descriptor)
SRAM (enqueue)
SRAM (dequeue)
SRAM (ring operation)
SRAM (journal operation)

Perform an ALU operation
Perform an ALU operation and shift
Perform an arithmetic right shift
Concatenate registers and select bytes
Compute CRC (big or little endian)
Concatenate and shift two longwords
Multiply two unsigned integers
Find position of LSB in register
Count 1 bits in a register
Load immediate 16-bit value to register
Load immediate byte to a field
Load immediate 16-bit word to a field
Load bytes to specified fields
Load instruction address
Read or write local microengine CSRs
Load or store values in CSR registers
Access queue in SRAM
Change queue in SRAM
Enqueue item in SRAM queue
Dequeue item from SRAM queue
Manipulate a communication ring in SRAM
Perform atomic operation in SRAM

NSD-Intel -- Chapt. 19 11 2004

Microengine View Of Memory

d Separate address spaces

d Specific instruction to reference each memory type

– Instruction dram to access DRAM memory

– Instruction sram to access SRAM memory

– Instruction scratch to access Scratchpad memory

d Consequence: early binding of data to memory

NSD-Intel -- Chapt. 19 12 2004

Six-Stage Instruction Pipeline

Stage Description22

1 Fetch the next instruction (part 1)
2 Fetch the next instruction (part 2)
3 Decode the instruction and get register address(es)
4 Extract the operands from registers
5 Perform ALU, shift, or compare operations and set

the condition codes
6 Write the results to the destination register

NSD-Intel -- Chapt. 19 13 2004

Example Of Pipeline Execution

stage 6stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

inst. 8

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

-

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

-

-

-

-

-

inst. 1

inst. 2

inst. 3

Time

d Once pipeline is started, one instruction completes per cycle

NSD-Intel -- Chapt. 19 14 2004

Instruction Stall

d Occurs when operand not available

d Processor temporarily stops execution

d Reduces overall speed

d Should be avoided when possible

NSD-Intel -- Chapt. 19 15 2004

Example Instruction Stall

d Consider two instructions:

K: ALU operation to add the contents of R1 to R2

K+1: ALU operation to add the contents of R2 to R3

d Second instruction cannot access R2 until value has been
written

d Stall occurs

NSD-Intel -- Chapt. 19 16 2004

Effect Of Instruction Stall

stage 6stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. K

inst. K+1

inst. K+2

inst. K+3

inst. K+3

inst. K+3

inst. K+4

inst. K+5

inst. K-1

inst. K

inst. K+1

inst. K+2

inst. K+2

inst. K+2

inst. K+3

inst. K+4

inst. K-2

inst. K-1

inst. K

inst. K+1

inst. K+1

inst. K+1

inst. K+2

inst. K+3

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

inst. K+2

inst. K-4

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

inst. K-5

inst. K-4

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

Time

d Bubble develops in pipeline

d Bubble eventually reaches final stage

NSD-Intel -- Chapt. 19 17 2004

A Note For Programmers

Understanding the execution pipeline is important for
programmers because dependencies among instructions can
cause the processor to stall, which lowers performance.

NSD-Intel -- Chapt. 19 18 2004

Sources Of Delay

d Access to result of previous / earlier operation

d Conditional branch

d Memory access

NSD-Intel -- Chapt. 19 19 2004

Memory Access Delays

Type Of Approx. Access Time In Clock Cycles
Memory IXP2400 IXP28x0222

Local Memory 1 1
Scratchpad 60 60
SRAM 150 90
DRAM 300 120

d Delay is surprisingly large

NSD-Intel -- Chapt. 19 20 2004

Threads Of Execution

d Technique used to speed processing

d Multiple threads of execution remain ready to run

d Program defines threads and informs processor

d Processor runs one thread at a time

d Processor automatically switches context to another thread
when current thread blocks

d Known as hardware threads

d Microengine has eight threads

NSD-Intel -- Chapt. 19 21 2004

Illustration Of Hardware Threads

thread 1

thread 2

thread 3

thread 4

time t1 time t2 time t3

time

context switch

d White - ready but idle

d Blue - being executed by microengine

d Gray - blocked (e.g., during memory access)

NSD-Intel -- Chapt. 19 22 2004

The Point Of Hardware Threads

Hardware threads increase overall throughput by allowing a
microengine to handle up to four packets concurrently; with
threads, computation can proceed without waiting for memory
access.

NSD-Intel -- Chapt. 19 23 2004

Context Switching Time

d Low-overhead context switch means one instruction delay as
hardware switches from one thread to another

d Zero-overhead context switch means no delay during context
switch

d IXP2xxx offers zero-overhead context switch

NSD-Intel -- Chapt. 19 24 2004

Microengine Instruction Store

d Private instruction store per microengine

d Advantage: no contention

d Disadvantage: smaller size (4000 instructions)

NSD-Intel -- Chapt. 19 25 2004

General-Purpose Registers

d two hundred fifty-six per microengine

d Thirty-two bits each

d Used for computation or intermediate values

d Divided into banks

d Context-relative or absolute addresses

NSD-Intel -- Chapt. 19 26 2004

Forms Of Addressing

d Absolute

– Entire set available

– Uses integer from 0 to 255

d Context-relative

– One eighth of set available to each thread

– Uses integer from 0 to 31

– Allows same code to run on multiple microengines

NSD-Intel -- Chapt. 19 27 2004

Register Banks

d Mechanism commonly used with RISC processor

d Registers divided into A bank and B bank

d Maximum performance achieved when each instruction
references a register from the A bank and a register from the
B bank

NSD-Intel -- Chapt. 19 28 2004

Summary Of General-Purpose Registers

Number Of
Active

Contexts

8

4

Active
Context
Number A Port B Port

General Purpose Register
Absolute Addresses S Transfer

or Neighbor
Index

D Transfer
Index

0 0 - 15 0 - 15 0 - 15 0 - 15

1 16 - 31 16 - 31 16 - 31 16 - 31

2 32 - 47 32 - 47 32 - 47 32 - 47

3 48 - 63 48 - 63 48 - 63 48 - 63

4 64 - 79 64 - 79 64 - 79 64 - 79

5 80 - 95 80 - 95 80 - 95 80 - 95

6 96 - 111 96 - 111 96 - 111 96 - 111

7 112 - 127 112 - 127 112 - 127 112 - 127

0 0 - 31 0 - 31 0 - 31 0 - 31

2 32 - 63 32 - 63 32 - 63 32 - 63

4 64 - 95 64 - 95 64 - 95 64 - 95

6 96 - 127 96 - 127 96 - 127 96 - 127

d Note: half of the registers for each context are from A bank
and half from B bank

NSD-Intel -- Chapt. 19 29 2004

Transfer Registers

d Used to buffer external memory transfers

d Example: read a value from memory

– Copy value from memory into transfer register

– Move value from transfer register into general-purpose
register

d Five hundred twelve per microengine

d Divided into four types

– SRAM or DRAM

– Read or write

NSD-Intel -- Chapt. 19 30 2004

Next Neighbor Registers

d Provide high-speed, synchronized communication

d Allows data to pass between microengines

d Handle small values

d Typically used to pass buffer address, not entire packet

d Used to build software pipeline

NSD-Intel -- Chapt. 19 31 2004

Next Neighbor Register Hardware

Primitive Type Purpose22

NN_Get Register Extract next item from next neighbor ring
NN_Put Register Insert item in a next neighbor ring
NN_FULL Signal Test whether a next neighbor ring is full
NN_EMPTY Signal Test whether a next neighbor ring is empty

d Hardware polls state bit

NSD-Intel -- Chapt. 19 32 2004

Local Memory

d Private (one per microengine)

d Small size (2560 bytes)

d Low latency (one instruction cycle after setup)

d Read or written under program control

d Accessed via special hardware registers

– Address placed in LM_ADDR0

– Value accessed via LM_ADDR1

NSD-Intel -- Chapt. 19 33 2004

Content Addressable Memory (CAM)

d Used to speed searches

d Characteristics

– Sixteen entries

– Thirty-two bit search key per entry

– Four-bit status value per entry

– Single instruction lookup

– Hardware reports first entry that matches

NSD-Intel -- Chapt. 19 34 2004

Organization Of CAM

tag for entry state bits

NSD-Intel -- Chapt. 19 35 2004

Hardware Bits Returned For CAM Operation

0 0 0

11 10 9 8 7 6 5 4 3

state bits entry numbermiss

NSD-Intel -- Chapt. 19 36 2004

Local Control And Status Registers

d Used to interrogate or control the IXP2xxx

d All mapped into XScale address space

d Microengine can only access its own local CSRs

NSD-Intel -- Chapt. 19 37 2004

Example Local CSRs

Local CSR Purpose22

USTORE_ADDRESS Load the microengine control store
USTORE_DATA_LOWER Lower 20 bits of the instruction
USTORE_DATA_UPPER Upper 12 bits of the instruction
USTORE_ERROR_STATUS Error status bits
ALU_OUT Debugging: allows XScale to read

GPRs and transfer registers
CTX_ARB_CTL Context arbiter control
CTX_ENABLES Context arbiter control
CC_ENABLE Debugging: read condition codes
CSR_CTX_POINTER Used to modify context-specific CSRs
INDIRECT_CTX_STS To access context-specific PC
ACTIVE_CTX_STS Find context currently running
TIMESTAMP_HIGH Clock (high-order bits)
TIMESTAMP_LOW Clock (low-order bits)
PSEUDO_RANDOM_NUMBER Random value

d Note: n is digit from 0 through 7 (hardware contains a
separate CSR for each of the eight contexts).

NSD-Intel -- Chapt. 19 38 2004

Interprocessor Communication Mechanisms

d Context-to-XScale communication

d Context-to-Context communication (one or more
IXP2xxx’s)

NSD-Intel -- Chapt. 19 39 2004

Context-To-XScale Communication

d Interrupts (SHaC unit)

d Shared memory

d Memory ring mechanism

– SRAM

– Scratchpad

NSD-Intel -- Chapt. 19 40 2004

Context-to-Context communication

d Signal event mechanism

d Memory ring mechanism

d Next neighbor registers

d Reflector bus mechanism

NSD-Intel -- Chapt. 19 41 2004

SHaC Unit

d Operates as coprocessor

d Controls

– Scratchpad memory

– Hash unit

– Communication mechanism used by microengines

– CSR bus interface

– Push / pull reflector

NSD-Intel -- Chapt. 19 42 2004

SHaC Architecture (simplified)

Scratch
and CAP
Control
Logic

Scratchpad
RAM

(4K x 32)

Pull1
FIFO

Pull0
FIFO

Pull1
FIFO

Pull0
FIFO

Hash
Unit

CSRs
(CAP)

pull
data

pull
data

pull
data

pull
data

push
data

XScale
periph.

Pull
Gen.

push
arbit.

cmd in

pull
arbit.

NSD-Intel -- Chapt. 19 43 2004

ScratchPad Memory

d Organized into 4K words of 4 bytes each

d Offers special facilities

– Atomic operations

* Set or clear bits

* Increment, decrement, add, or subtract

* Swap values

– Communication rings

NSD-Intel -- Chapt. 19 44 2004

Hash Unit

d Configurable coprocessor

d Operates asynchronously

d Intended for fast table lookup

NSD-Intel -- Chapt. 19 45 2004

Hash Unit Computation

d Computes quotient Q(x) and remainder R(x):

A(x) ∗ M(x) / G(x) → Q(x) + R(x)

d A(x) is input value

d M(x) is hash multiplier (configurable)

d G(x) is built-in value

d Three values for G (48-bit, 64-bit, or 128-bit hash)

NSD-Intel -- Chapt. 19 46 2004

Hash Mathematics

d Integer value interpreted as polynomial over field [0,1]

d Example:

2040116

d Is interpreted as

x17 + x10 + 1

d Similarly, value G(x) used in 48-bit hash

100100200040116

d Is interpreted as

x48 + x36 + x25 + x10 + 1

NSD-Intel -- Chapt. 19 47 2004

Hash Example

A = 80000000000116 (x47 + 1)

G = 100100200040116 (x48 + x36 + x25 + x10 + 1)

M = 20D16 (x9 + x3 + x2 + 1)

d Hash computes R, remainder of M times A divided by G

H(X) = R = A ∗ M % G

NSD-Intel -- Chapt. 19 48 2004

Hash Example
(continued)

d We see that

A(x) ∗ M(x) = x56 + x50 + x49 + x47 + x9 + x3 +

x2 + 1

d Furthermore:

A ∗ M = Q ∗ G + R

NSD-Intel -- Chapt. 19 49 2004

Hash Example
(continued)

d Where

Q(x) = x8 + x2 + x1

d Thus, Q is 10616 and R is

R(x) = x47 + x44 + x38 + x37 + x33 + x27 + x26

+ x18 + x12 + x11 + x9 + x8 + x3 + x1 + 1

d The hash unit returns R as the value of the computation:

H(A) = R = 90620C041B0B16

NSD-Intel -- Chapt. 19 50 2004

Other IXP2xxx Hardware

d The IXP2xxx contains registers used for

– Configuration and bootstrapping

– Control of functional units and buses

– Checking status of processors, threads, and onboard
functional units

NSD-Intel -- Chapt. 19 51 2004

The Point About Registers

In addition to basic functional units, the IXP contains hundreds
of registers that allow software to configure, control, or
interrogate the status of functional units, buses, and attached
devices.

NSD-Intel -- Chapt. 19 52 2004

Media Switch Fabric Interface

d Complex unit

d Primary interface to high-speed external devices

d Configurable to handle standard MACs such as

– UTOPIA0 (IXP2400 only)

– SPI-3 (IXP2400 only)

– SPI-4.2 (IXP28x0 only)

NSD-Intel -- Chapt. 19 53 2004

Transmit And Receive BUFs

d Used for I/O

d Contained in MSF unit

d Function as randomly accessible memory

d Transfer in chuncks of 64, 128, or 256 bytes

d Two types

– Receive BUFs (RBUFs) handle input

– Transmit BUFs (TBUFs) handle output

NSD-Intel -- Chapt. 19 54 2004

Crypto Unit

d Available on the IXP2850

d Two units

d Can be used for

– Two 3DES/DES (Data Encryption Standard) cores for
data encryption/decryption

– One AES (Advanced Encryption Standard) core for data
encryption/decryption that can use 128, 192 or 256 bit
keys

– Two SHA-1 (Secure Hash Algorithm) cores for
authentication

d Programmer chooses

NSD-Intel -- Chapt. 19 55 2004

Ctypto Unit
(continued)

d Support for

– The Electronic Code Book standard (ECB)

– The Cipher Block Chaining standard (CBC)

d Sufficient for

– IPsec

– SSL

NSD-Intel -- Chapt. 19 56 2004

Crypto Unit API

d Input RAM (read/write to on-board RAM)

d State (set crypto parameters, e.g. keys)

d Cipher (initiate cypher algorithm execution)

d Hash (initiate hash algorithm execution)

d Utils (functions such as checksum calculation)

NSD-Intel -- Chapt. 19 57 2004

Summary

d Microengines

– Low-level, programmable packet processors

– Use RISC design with instruction pipeline

– Have hardware threads for higher throughput

– Use transfer registers to access memory

– Use BUFs for I/O

– Have access to hash and crypto units

NSD-Intel -- Chapt. 19 58 2004

Questions?

XXI

Programming Model

NSD-Intel -- Chapt. 21 1 2004

Assumptions About Support Software
And Overall Structure

d XScale runs MontaVista Embedded Linux

d Code for XScale compiled to run under Linux

d Microengines do not run any OS

d Code for microengines compiled to run on bare machine

d Consequences for programmers:

– Microcode handles all hardware details

– XScale code relies on libraries and OS

NSD-Intel -- Chapt. 21 2 2004

Major Pieces Of Software

d One or more microblocks that run on the microengines

d A core component that runs on the XScale

d User interface code that runs on the XScale

d Note: we will concentrate on the first two

NSD-Intel -- Chapt. 21 3 2004

Interconnections Among Microblocks

d Each microblock is asynchronous

d Fast data path code built as series of microblock stages

d Basic pipeline architecture

NSD-Intel -- Chapt. 21 4 2004

Typical Network Systems

d At least three microblocks

– Ingress

– Processing

– Egress

NSD-Intel -- Chapt. 21 5 2004

Example Microblock Pipeline

process
microblock

ingress
microblock

egress
microblock

input
ports

output
ports

d Ingress and egress microblocks

– Interface with MSF

– Handle packet I/O

d Process microblock

– Performs protocol processing

NSD-Intel -- Chapt. 21 6 2004

Assignment Of Microblocks To Microengines

d Approach #1

– Multiple types of microblocks run on each microengine

– Each thread runs one microblock

d Approach #2

– Each microblock runs on separate microengine

– Multiple copies (threads) used to increase performance

d In practice, most systems use approach #2

NSD-Intel -- Chapt. 21 7 2004

Mpackets And Transfers

d MSF divides incoming packet into fixed-size units called
mpackets

d Mpacket size can be configured to be 64, 128, or 256 octets

d Each mpacket received independently

d Hardware sets bit to indicate first and last mpacket of a
packet

d Software divides outgoing packet into mpackets

d Each mpacket transmitted independently

NSD-Intel -- Chapt. 21 8 2004

Ingress And Egress Microblocks

d Available from building blocks library

d Ingress microblock

– Named Receive (RX)

– Invoked whenever an mpacket arrives

– Places mpacket in buffer in memory

d Egress microblock

– Named Transmit (TX)

– Invoked whenever an mpacket is ready for egress

– Releases buffer after mpacket is sent

NSD-Intel -- Chapt. 21 9 2004

Microblocks And Parallel Execution

d Microengine can be dedicated to run exactly one microblock

d Microengine can run multiple microblocks in a pipeline

d Multiple microengines can run copies of a pipeline

d Each approach has advantages and disadvantages

NSD-Intel -- Chapt. 21 10 2004

Packet Buffers

d Mechanism provided by SDK

d Set of fixed-size buffers allocates in DRAM

d Typical buffer size is 2048

d Buffer holds

– Packet (e.g., Ethernet frame)

– Control information called metadata

NSD-Intel -- Chapt. 21 11 2004

Placement Of A Packet In A Buffer

d Metadata occupies first 128 bytes of buffer

d Padding separates metadata from packet

d Optimizes memory access

– DRAM organized into four banks

– All banks can be accessed in parallel

– Bank starts at 128 bytes beyond previous

d Goal: distribute packet headers evenly over banks

NSD-Intel -- Chapt. 21 12 2004

Illustration Of Buffer Layout

metadata (128 bytes)

padding (0, 128, 256, or 384 bytes)

packet data

unused space

d Padding is selected at random

NSD-Intel -- Chapt. 21 13 2004

Buffer Queues And Buffer Allocation

d Hardware support for high-speed buffer allocation

d Mechanism implements First-In-First-Out (FIFO)

– Singly-linked list

– Head and tail pointers

– Two basic operations

* Enqueue adds item at tail

* Dequeue removes item from head

NSD-Intel -- Chapt. 21 14 2004

Buffer Queues And Buffer Allocation
(continued)

d FIFO mechanism

– Provided by SRAM memory controller

– Known as Queue Array

d Packet queues kept in DRAM

d Linear mapping between items in SRAM Queue Array and
DRAM buffers

NSD-Intel -- Chapt. 21 15 2004

Mapping Between Queue Array And DRAM Buffers

Queue Array SRAM SDRAM

(head pointer)

(tail pointer)

...
...

...

...

..

.

d Linear mapping between address of queue element in
SRAM and address of buffer in DRAM

NSD-Intel -- Chapt. 21 16 2004

Example Address Mapping

d Thirty-two buffers allocated in DRAM

– Let B denote starting location

– Assume buffers are contiguous

d Queue of thirty-two list elements allocated in SRAM

– Let F denote starting location

– Assume elements are contiguous

– Known as free buffer list

d Let A be address of list element in SRAM returned by
dequeue operation

NSD-Intel -- Chapt. 21 17 2004

Example Address Mapping
(continued)

d Address of corresponding buffer in DRAM is

buffer address = B +
free list element size

A − F333333333333333333 × buffer size

d Where buffer size denotes the size of a packet buffer

d Optimization: to avoid division, precompute

DL_DS_RATIO =
free list element size

buffer size333333333333333333

and

DL_REL_BASE = B − F × DL_DS_RATIO

NSD-Intel -- Chapt. 21 18 2004

Example Address Mapping
(continued)

d Once constants are precomputed, a buffer address is found
by:

bufferaddress = A × DL_DS_RATIO + DL_REL_BASE

d Note: if buffer and free list elements are powers of two,
multiplication can be replaced by bitwise shift

NSD-Intel -- Chapt. 21 19 2004

Buffer Handle

d List element address in SRAM

d Used as packet ID

d Is translated to buffer address as needed

d Consists of four bytes

– Three bytes correspond to SRAM address

– One byte used to pass additional information

* Beginning of packet

* End of packet

* Count of segments in the packet

NSD-Intel -- Chapt. 21 20 2004

Packet Discard

d Uses buffer handle

d Extremely efficient

d To discard, dequeue buffer handle on free list

d No other action required

NSD-Intel -- Chapt. 21 21 2004

Packet Forwarding Mechanism

d Hardware mechanism used for interprocess communication

d Supported by both SRAM and Scratch memories

d Known as Memory Ring

d Controller implements insertion and extraction

d Requests serialized and atomic

d Used for high-speed forwarding of packets among
microengines and XScale

NSD-Intel -- Chapt. 21 22 2004

Illustration Of Scratch Rings

microengine 1 microengine 2 microengine 3

XScale

ingress
microblock

process
microblock

egress
microblock

core
component

Scratch
rings

Scratch
ring

NSD-Intel -- Chapt. 21 23 2004

Queue Array Hardware Limitation

d Hardware only has sixty-four Queue Array entries per
SRAM channel.

– IXP2400 has 2 SRAM channels

– IXP28xx has 4 SRAM channels

d Consequence: cannot have arbitrarily many Rings

NSD-Intel -- Chapt. 21 24 2004

Overcoming The Queue Array Limitation

d Resource manager allocates backup store in SRAM for each
Queue Array entry

d When Queue Array exhausted, software

– Chooses one Queue Array entry (typically LRU)

– Copies entry to backup store

– Uses hardware slot for new Queue Array

d Process is known as spilling

d CAM can be used used to choose entry to spill

NSD-Intel -- Chapt. 21 25 2004

Core Processing

d Terminology

– XScale is referred to as core processor

– Software running on the XScale is called core
component

d Core processing

– Insufficient speed for fast path

– Reserved for exceptions

d Note: core processor has access to memory rings and queues

NSD-Intel -- Chapt. 21 26 2004

Summary

d Two major types of software

– One or more microblocks

– Core component

d Microblocks interconnected in pipline

d SDK includes ingress and egress microblocks

d Packet buffers allocated in DRAM; free list kept in SRAM

d Address of list element in SRAM called buffer handle

NSD-Intel -- Chapt. 21 27 2004

Summary
(continued)

d Linear mapping translates buffer handle to DRAM address
when needed

d Packet discard is trivial (return buffer handle to free list)

d Memory ring mechanism used for IPC

d Queue array hardware provides finite set of queues; values
spilled to SRAM when necessary

NSD-Intel -- Chapt. 21 28 2004

Questions?

XXII

XScale Facilities

NSD-Intel -- Chapt. 22 1 2004

XScale Responsibilities

d Loading microengine code

d Creating rings and / or queues for communication

d Allocating and reclaiming resources such as memory

d Patching symbols in microcode

d Starting and controlling microengine operation

d Providing an external interface for management

d Providing an interface to operating system facilities

d Doing slow path processing of exception packets

NSD-Intel -- Chapt. 22 2 2004

Conceptual Organization Of XScale Software

d Several pieces of support software available

d Core component uses each piece directly or indirectly

d Each piece of support software implemented as a Linux
loadable kernel module

d Core component also implemented as a kernel module

NSD-Intel -- Chapt. 22 3 2004

Organization Of Software On XScale

Linux kernel

core component

CCI

Resource Manager

HAL Mev2 Library

OSSL HAL Me Driver

NSD-Intel -- Chapt. 22 4 2004

Core Component Infrastructure (CCI)

d Support module

d Provides facilities to

– Create and run core components

– Setup timers

– Give each core component a private execution engine

NSD-Intel -- Chapt. 22 5 2004

Resource Manager (RM)

d Support module

d Among most important

d Provides facilities used to

– Access operating system services

– Manage memory and translate addresses

– Control microengines

– Load code into microengines

– Manage queue of exception packets sent to core
component

NSD-Intel -- Chapt. 22 6 2004

Operating System Specific Library (OSSL)

d Unfortunate name

d Role of the OSSL is operating system independence

d Core component calls OSSL function

d OSSL function calls undelrying OS function

d Allows core component to remain independent of the
underlying OS

NSD-Intel -- Chapt. 22 7 2004

Hardware Abstraction Layer (HAL)

d Two HAL modules

– Library halMev2_lib provides control functions

– Module halMeDrv provides access to microengine CSRs

d Isolate programmer from hardware details

NSD-Intel -- Chapt. 22 8 2004

Memory Management

d SRAM, DRAM, and Scratch memories shared among
microengines and XScale

d However

– Addressing schemes used by microengines and XScale
differ

– Parallel processors cannot attempt to allocate memory
without mutual exclusion

d SDK solution: all memory management (allocation and
deallocation occurs through Resource Manager on XScale

NSD-Intel -- Chapt. 22 9 2004

Memory Management Functions
In The Resource Manager

d ix_rm_mem_alloc

– Argument specifies DRAM, SRAM, or Scratch memory

– Although XScale uses single address space, Resource
Manager ensures allocation is made from specified
memory

d ix_rm_mem_free

NSD-Intel -- Chapt. 22 10 2004

Memory Allocation By Microengine

d Microengine

– Can make an allocation directly

– Must inform Resource Manager after allocation
complete

– Known as a reservation

d To make a reservation, core component calls

– ix_rm_mem_reserve

NSD-Intel -- Chapt. 22 11 2004

Allocation Of Local Memory

d Only visible to individual microengine

d However, Resource Manager provides functions that allow
microengine to allocate and free Local Memory

– ix_rm_mem_local_alloc

– ix_rm_mem_local_free

– ix_rm_mem_local_reserve

NSD-Intel -- Chapt. 22 12 2004

Address Translation

d Functions in Resource Manager always return a virtual
address in the XScale’s address space

d Address must be translated to physical address before
microengine can use it

d Address from microengine must be translated to virtual
address before core component can use it

d All translation performed by core component using
Resource Manager functions

– ix_rm_get_physical_offset

– ix_rm_get_virtual_address

NSD-Intel -- Chapt. 22 13 2004

Ring And Queue Creation

d Provided by Resource Manager

d Three functions

– ix_rm_hw_queue_create

– ix_rm_hw_sram_ring_create

– ix_rm_hw_scratch_ring_create

d Return a handle

d Value of handle can be predeclared and used as argument

NSD-Intel -- Chapt. 22 14 2004

Ring And Queue Deletion

d Also performed by Resource Manager

d Two functions

– ix_rm_hw_queue_delete

– ix_rm_hw_ring_delete

NSD-Intel -- Chapt. 22 15 2004

Ring And Queue Manipulation

d Performed by Resource Manager

d Functions are

– ix_rm_hw_enqueue

– ix_rm_hw_dequeue

– ix_rm_hw_ring_put

– ix_rm_hw_ring_get

NSD-Intel -- Chapt. 22 16 2004

Buffer Management Facilities

d Special case of queue

d Function to create free list is

– ix_rm_buffer_free_list_create

NSD-Intel -- Chapt. 22 17 2004

Basic Form Of Core Component

do forever {

wait for next packet from the microengines;

process the packet;

}

d Note: although macroengines typically send a packet, the
mechanism allows a microengine to send a ‘‘message’’

NSD-Intel -- Chapt. 22 18 2004

Core Processing

d Questions

– How does a core component avoid using the CPU while
waiting for a packet from the microengines?

– If multiple core components exist to process packets,
how is a given packet sent to the correct core
component?

– Can messages that arrive from microengines be
processed out-or-order?

d Answer

– Introduce an additional demultiplexing stage

– To send a message, microengine interrupts the
demultiplexing stage.

NSD-Intel -- Chapt. 22 19 2004

Illustration Of Core Architecture

1 2 3

ID = 1 ID = 2 ID = 3

core components (kernel threads)

demultiplexing stage

messages arrive
from microengines

packets arrive
from microengines

NSD-Intel -- Chapt. 22 20 2004

Patching Symbols And
Loading Microcode

d XScale loads microengine control store

d Symbolic references in code replaced by constant value

d Known as patching

d Allows values to change without recompilation

d Assembly import directive used to specify name and value
to the assembler

– .import_var MY_CONSTANT

NSD-Intel -- Chapt. 22 21 2004

Difference Between Import
And Defined Constants

d The code below produces an error (constant is too large)

#define MY_CONSTANT 0x12345678

alu [addr, MY_CONSTANT, +, 4]

d The following code compiles without an error (constant is
truncated during patching)

.import_var MY_CONSTANT

alu [addr, MY_CONSTANT, +, 4]

NSD-Intel -- Chapt. 22 22 2004

Use Of Immed32

d To avoid compiler error

.import_var MY_CONSTANT

.reg temp_value

immed32(tmp_value, MY_CONSTANT)

alu [addr, tmp_value, +, 4]

NSD-Intel -- Chapt. 22 23 2004

Resource Manager API

d Allows a core component to

1. Read microcode from an external binary file and place it
in a structure.

2. Define the names and values of a set of imported
symbols.

3. Patch the microcode by replacing each imported variable
reference with the appropriate value.

4. Load the patched microcode into the microengine
instruction store.

NSD-Intel -- Chapt. 22 24 2004

Example Of Using The Resource Manager

d Load code from my_file and patch imported constant
MY_CONSTANT

ix_rm_ueng_set_ucode(my_name);

importSymbols[0].m_Name = "MY_CONSTANT";

importSymbols[0].m_Value = 0x12345678;

ix_rm_ueng_patch_symbols(me_number, 1, importSymbols);

ix_rm_ueng_load();

NSD-Intel -- Chapt. 22 25 2004

Resource Manager Functions To
Control A Microengine

d To start a microengine

ix_rm_ueng_start()

d To stop a microengine

ix_rm_ueng_stop()

NSD-Intel -- Chapt. 22 26 2004

Summary

d XScale software includes

– Base operating system (Linux)

– Core components

– Support software

d Core component runs as a loadable Linux loadable kernel
module

d Each support software system also runs as Linux loadable
kernel module

NSD-Intel -- Chapt. 22 27 2004

Summary
(continued)

d Support software includes

– Resource Manager

– Core Component Infrastructure

– Operating System Specific Library

– Hardware Abstraction Layer

d Resource Manager offers API for items such as

– Memory management and address translation

– Queue and Ring allocation

– Control of microengines

NSD-Intel -- Chapt. 22 28 2004

Questions?

XXIII

Microengine Programming I

NSD-Intel -- Chapt. 23 1 2004

Microengine Code

d Many low-level details

d Close to hardware

d Written in (micro)assembly language

NSD-Intel -- Chapt. 23 2 2004

Features Of Intel’s Microengine Assembler

d Directives to control assembly

d Symbolic register names

d Macro preprocessor (extension of C preprocessor)

d Set of structured programming macros

NSD-Intel -- Chapt. 23 3 2004

Statement Syntax

d General form:

label: operator operands tokens

d label is optional

d Interpretation of tokens depends on instruction

NSD-Intel -- Chapt. 23 4 2004

Comment Statements

d Three styles available

– C style (between /* and */)

– C++ style (// until end of line)

– Traditional assembly style (; until end of line)

d Only traditional comments remain in code for intermediate
steps of assembly

NSD-Intel -- Chapt. 23 5 2004

Assembler Directives

d Begin with period in column one

d Can

– Generate code

– Control assembly process

d Example: associate myname with register five in the A
register bank

.areg myname 5 a

NSD-Intel -- Chapt. 23 6 2004

Example Operand Syntax

d Instruction alu invokes the ALU

alu [dst, src1, op, src2]

d Four operands

– Destination register

– First source register

– Operation

– Second source register

d Two minus signs (– –) can be specified for destination, if
none needed

NSD-Intel -- Chapt. 23 7 2004

Major ALU Operations

Operator Meaning22

+ Result is src1 + src2
- Result is src1 - src2
B-A Result is src2 - src1
B Result is src2
~B Result is the bitwise inversion of src2
AND Result is bitwise and of src1 and src2
OR Result is bitwise or of src1 and src2
XOR Result is bitwise exclusive or of src1 and src2
+carry Result is src1 + src2 + carry from previous operation
-carry Result is src1 - src2 - carry from previous operation
~AND Result is bitwise (not src1) and src2
AND~ Result is bitwise (src1 and (not src2)
+8 Result is src1 + src2 with the first 24 bits set to zero
+16 Result is src1 + src2 with the first 16 bits set to zero

NSD-Intel -- Chapt. 23 8 2004

ALU Shift Operations

d Shifts or rotates src2 before operation

d Syntax is

alu_shf [dst, src1, op, src2, src2_shift_op]

NSD-Intel -- Chapt. 23 9 2004

Memory Operations

d Programmer specifies

– Type of memory

– Direction of transfer

– Address in memory (two registers used)

– Starting transfer register

– Count of words to transfer

– Optional tokens

NSD-Intel -- Chapt. 23 10 2004

Memory Operations
(continued)

d General forms

sram [direction, xfer_reg, addr1, addr2, count], optional_tokens

dram [direction, xfer_reg, addr1, addr2, count], optional_tokens

scratch [direction, xfer_reg, addr1, addr2, count], optional_tokens

NSD-Intel -- Chapt. 23 11 2004

Special Memory Operations

d Some memories offer special operations such as

– Test-and-set

– Atomic increment

d Operand direction used to specify special operations

NSD-Intel -- Chapt. 23 12 2004

Memory Addressing

d Specified with operands addr1 and addr2

d Each operand corresponds to register

d Use of two operands can be used to

– Scale to large memory

– Use base + offset form

NSD-Intel -- Chapt. 23 13 2004

Immediate Instruction

d Place constant in thirty-two bit register

immed [dst, ival, shift]

d Upper sixteen bits of ival must be all zeros or all ones

d Operand shift specifies bit shift

0 No shift

<< 0 No shift (same as 0)

<< 8 Shift to the left by eight bits

<< 16 Shift to the left by sixteen bits

NSD-Intel -- Chapt. 23 14 2004

Other Forms Of Immed Instruction

d Used to load part of a register

immed_b0 Load byte zero (low-order byte) only

immed_b1 Load byte one only

immed_b2 Load byte two only

immed_b3 Load byte three only

immed_w0 Load word zero (low-order 16 bits) only

immed_w1 Load word one only

NSD-Intel -- Chapt. 23 15 2004

Register Names

d Usually automated by assembler

d Directives available for manual assignment

Directive Type Of Assignment222

.addr name a Manual assignment to bank A

.addr name b Manual assignment to bank B

.reg name Automatic assignment

NSD-Intel -- Chapt. 23 16 2004

Automated Register Assignment

Intel’s microengine assembler uses symbolic names for
registers, and then maps each name to a specific register. A
programmer can use directives to specify the mapping manually
or can allow the assembler to choose a mapping; for general-
purpose and next-neightbor registers, a programmer cannot mix
automatic and manual assignments.

NSD-Intel -- Chapt. 23 17 2004

Register Names And Meanings

d Name denotes type of register

Register Type Relative Absolute22

General-purpose register_name @register_name
SRAM transfer $register_name -
DRAM transfer $$register_name -
Next neighbor n$register_name -

NSD-Intel -- Chapt. 23 18 2004

Register Allocation

d Hardware provides both read and write transfer registers

d Same numbers used

d Separate allocation functions

.xfer_read name

.xfer_write name

NSD-Intel -- Chapt. 23 19 2004

Local Register Scope, Nesting, And Shadowing

d Programmer

– Uses .begin directive to declare register names

– Defines register names

– References names in instructions

– Uses .end to terminate scope

d Assembler

– Assigns registers

– Chooses bank for each register

– Replaces names in code with correct reference

NSD-Intel -- Chapt. 23 20 2004

Illustration Of Automated Register Naming

d One or more register names specified after .begin

d Example

.begin

.reg myreg loopctr tot

.end

.

.

.

code in this block can use
registers myreg, loopctr, and tot

d Names valid only within scope

NSD-Intel -- Chapt. 23 21 2004

Nested Scopes

d Programmer specifies .begin and .end pair inside a .begin
.end pair

d Innermost scope has precedence

d Intel says inner declarations shadow outer declarations

NSD-Intel -- Chapt. 23 22 2004

Illustration Of Nested Register Scope

.begin

.reg myreg loopctr

.end

.begin

.reg rone rtwo

.end

.begin

.reg rthree rfour

.end

.

.

.

.

.

.

outer scope that defines registers
myreg and loopctr

nested scope that defines registers
rone and rtwo

nested scope that defines registers
rthree and rfour

NSD-Intel -- Chapt. 23 23 2004

Register Assignments And Conflicts

d Operands must come from separate banks

d Some code sequences cause conflict

d Example:

Z ← Q + R;
Y ← R + S;
X ← Q + S;

d No assignment is valid

d Programmer must change code

NSD-Intel -- Chapt. 23 24 2004

Macro Preprocessor Features

d File inclusion

d Symbolic constant substitution

d Conditional assembly

d Parameterized macro expansion

d Arithmetic expression evaluation

d Iterative generation of code

NSD-Intel -- Chapt. 23 25 2004

Macro Preprocessor Statements

Keyword Use22

#include Include a file
#define Definition of a symbolic constant (unparameterized)
#define_eval Definition of a symbolic constant equal to an arithmetic expression
#undef Remove a previous symbolic constant definition
#macro Start the definition of a parameterized assembly language macro
#endm End a macro definition started with #macro
#ifdef Start conditional compilation if specified symbolic constant has

been defined
#ifndef Start conditional compilation if specified symbolic constant has

not been defined
#if Start conditional compilation if expression is true
#else Terminate current conditional compilation and start alternative

part of conditional compilation
#elif Terminate current conditional compilation and start another

if expression is true
#endif Terminate current conditional compilation
#for Start definite iteration to generate a code segment a fixed number

of times
#while Start indefinite iteration to generate a code segment while a

condition holds
#repeat Start indefinite iteration to repeat a code segment as long as a

condition holds
#endloop Terminate an iteration

NSD-Intel -- Chapt. 23 26 2004

Macro Definition

d Can occur at any point in program

d General form:

#macro name [parameter1 , parameter2 , . . .]
lines of text

#endm

NSD-Intel -- Chapt. 23 27 2004

Macro Example

d Compute a = b + c + 5

/* example macro add5 computes a=b+c+5 */
#macro add5[a, b, c]

.begin

.reg tmp
alu[tmp, c, +, 5]
alu[a, b, +, tmp]

.end
#endm

d Assumes values a, b, and c in registers

NSD-Intel -- Chapt. 23 28 2004

Macro Expansion Example

d Call of add5[var1, var2, var3] expands to:

.begin

.reg tmp
alu[tmp, var3, +, 5]
alu[var1, var2, +, tmp]

.end

d Warning: because macros use textual substitution, illegal
arguments can generate illegal code

NSD-Intel -- Chapt. 23 29 2004

Repeated Generation Of A Code Segment

d Macro preprocessor

– Supports #while statement for iteration

– Uses #define_eval for arithmetic evaluation

d Can be used to generate sequence of code blocks

NSD-Intel -- Chapt. 23 30 2004

Example Of Repeated Code

d Preprocessor code:

#define LOOP 1
#while (LOOP < 4)

alu_shf[reg, -, B, reg, >>LOOP]
#define_eval LOOP LOOP + 1
#endloop

d Expands to:

alu_shf[reg, -, B, reg, >>1]
alu_shf[reg, -, B, reg, >>2]
alu_shf[reg, -, B, reg, >>3]

NSD-Intel -- Chapt. 23 31 2004

Structured Programming Directives

d Make code appear to follow structured programming
conventions

d Include break statement al la C

Directive Meaning222

.if Conditional execution

.if_unsigned Unsigned version of .if

.elif Terminate previous conditional execution and
start a new conditional execution

.elif_unsigned Unsigned version of .elif

.else Terminate previous conditional execution and
define an alternative

.endif End .if conditional

.while Indefinite iteration with test before

.while_unsigned Indefinite iteration (unsigned)

.endw End .while loop

.repeat Indefinite iteration with test after

.until End .repeat loop

.until_unsigned Unsigned version of .until

.break Leave a loop

.continue Skip to next iteration of loop

NSD-Intel -- Chapt. 23 32 2004

Example Of Conditional Compliation

.if (conditional_expression)
/* block of microcode statements */

.elif (conditional_expression)
/* block of microcode statements */

.elif (conditional_expression)
/* block of microcode statements */
.
.
.

.else
/* block of microcode statements */

.endif

NSD-Intel -- Chapt. 23 33 2004

Tests That Can Be Used In
A Conditional Expression

Operator Meaning222

BIT Test whether a bit in a register is set
BYTE Test whether a byte in a register equals a constant
COUT Test whether a carry occurred on the previous operation
CTX Test the currently executing thread number
SIGNAL Test whether a specified signal has arrived for a thread
INP_STATE Test whether the thread is in a specified state

NSD-Intel -- Chapt. 23 34 2004

Mechanisms For Context Switching

d Context switching is voluntary

d Thread can execute:

– ctx_arb instruction

– Reference instruction (e.g., memory reference)

NSD-Intel -- Chapt. 23 35 2004

Argument To ctx_arb Instruction

d Determines disposition of thread

– voluntary: thread suspended until later

– signal_event: thread suspended until specified event
occurs

– kill: thread terminated

NSD-Intel -- Chapt. 23 36 2004

Context Switch On Reference Instruction

d Token added to instruction to control context switch

d Two possible values

– ctx_swap: thread suspended until operation completes

– sig_done: thread continues to run, and signal posted
when operation completes

d Signals available for SRAM, DRAM, PCI bus, etc.

NSD-Intel -- Chapt. 23 37 2004

Example Of Context Switch

d To perform context switch while waiting for DRAM access:

dram [read, $$rbuf0, base, 2, 4] , sig_done [sig_name]

NSD-Intel -- Chapt. 23 38 2004

Indirect Reference

d Poor choice of name

d Hardware optimization

d Found on other RISC processors

d Result of one instruction modifies next instruction

d Avoids stalls

d Typical use

– Compute N, a count of words to read from memory

– Modify memory access instruction to read N words

NSD-Intel -- Chapt. 23 39 2004

Fields That Can Be Modified

d Microengine associated with a memory reference

d Starting transfer register

d Count of words of memory to transfer

d Context number of the hardware context executing the
instruction (i.e., context to signal upon completion)

d The mask that specifies a set of signals

NSD-Intel -- Chapt. 23 40 2004

How Indirect Reference Operates

d Programmer codes two instructions

– ALU operation

– Instruction with indirect reference set

d Note: destination of ALU operation is – – (i.e., no
destination)

d Hardware

– Executes ALU instruction

– Uses result of ALU instruction to modify field in next
instruction

NSD-Intel -- Chapt. 23 41 2004

Example Of Indirect Reference

d Example code

alu_shf [– –, – –, b, 0x13, << 16]
scratch [read, $reg0, addr1, addr2, 0], indirect_ref

d Memory instruction coded with count of zero

d ALU instruction computes count

NSD-Intel -- Chapt. 23 42 2004

External Transfers

d Microengine cannot directly access

– Memory

– Buses (I/O devices)

d Intermediate hardware units used

– Known as transfer registers

– Multiple registers can be used as large, contiguous buffer

NSD-Intel -- Chapt. 23 43 2004

External Transfer Procedure

d Allocate contiguous set of transfer registers to hold data

d Start reference instruction that moves data to or from
allocated registers

d Arrange for thread to wait until the operation completes

NSD-Intel -- Chapt. 23 44 2004

Allocating Contiguous Registers

d Registers assigned by assembler

d Programmer needs to ensure transfer registers contiguous

d Assembler provides .xfer_order directive

d Example: allocate four continuous SRAM input transfer
registers

.reg $reg1 $reg2 $reg3 $reg4

.xfer_order_rd $reg1 $reg2 $reg3 $reg4

d Notes

– Ordering affects both read and write registers

– Directive .xfer_order_wr available for output

NSD-Intel -- Chapt. 23 45 2004

Summary

d Microengines programmed in assembly language

d Intel’s assembler provides

– Directives for structuring code

– Macro preprocessor

– Automated register assignment

d External data access performed through transfer registers

NSD-Intel -- Chapt. 23 46 2004

Questions?

XXIV

Microengine Programming II

NSD-Intel -- Chapt. 24 1 2004

Specialized Memory Operations

d Ring and Queue manipulation

d Processor coordination (e.g., via atomic bit operations)

d Atomic memory operations (e.g incr, and decr)

NSD-Intel -- Chapt. 24 2 2004

Ring And Queue Manipulation

d SRAM controller provides Queue Array mechanism

d XScale used to create buffers in Queue Array

d Microengine can allocate buffer from free list

sram [dequeue, xfer, src_op1, src_op2], tokens

d Handle placed in xfer register

d src operands encode memory channel and Queue Array
number

NSD-Intel -- Chapt. 24 3 2004

Ring And Queue Manipulation

d Microengine can return buffer to free lsit

sram [enqueue, – –, src_op1, src_op2]

d Note: macros assume variables DL_DS_RATIO and
DL_REL_BASE have been defined

NSD-Intel -- Chapt. 24 4 2004

Processor Coordination
Via Bit Testing

d Provided by SRAM and Scratchpad memories

d Atomic operations on individual bits

d Mask used to specify bit in a word

d General form

scratch [cmd, $xfer, addr1, addr2]

d Operands addr1 and addr2 added to form address

d Register $xfer contains 32-bit mask

NSD-Intel -- Chapt. 24 5 2004

Bit Manipulation Commands

Operation Meaning222

set Set the specified bits to one
clr Set the specified bits to zero
test_and_set Place the original word in the read transfer

register, and set the specified bits to one
test_and_clr Place the original word in the read transfer

register, and set the specified bits to zero

NSD-Intel -- Chapt. 24 6 2004

Atomic Memory Operations

d Memory shared among

– XScale

– Microengines

d Need atomic increment to avoid incorrect results

d General form

scratch [operation, optional_value, addr1, addr2]

d optional_value depends on operation being performed

NSD-Intel -- Chapt. 24 7 2004

Atomic Memory Operations
(continued)

d Possible atomic operations include:

Operation Meaning22

incr Increment the specified word in memory
decr Decrement the specified work in memory
add Add the value in a transfer register to

the specified word in memory
sub Subtract the value in a transfer register

to the specified word in memory

NSD-Intel -- Chapt. 24 8 2004

Critical Sections And Folding

d Piece of code that referenes shared variables known as
critical section

d To ensure correctness, only one thread can execute a critical
section at any time (mutual exclusion)

d IXP2xxx solution: sequencing

– Set of threads placed in circular order

– Thread passes control the ‘‘next’’ thread

NSD-Intel -- Chapt. 24 9 2004

Steps Used For Sequencing

Let C be the context number (thread ID);

if (C == 0) {

wait for signal from ‘‘previous’’ microengine;

} else {

wait for signal from context C – 1;

}

access the critical section;

if (C == 7) {

signal ‘‘next’’ microengine;

} else {

signal context C + 1;

}

NSD-Intel -- Chapt. 24 10 2004

Optimized Sequencing

d Steps for sequencing assume threads on a given microengine
in consecutive positions of sequence

d To optimize data access

– First thread on microengine copies shared variable into
Local Memory

– Threads on microengine sequence and use local copy

– Last thread on microengine copies value back to external
memory

d Can be dynamic: use CAM to test whether variable is in
Local Memory

NSD-Intel -- Chapt. 24 11 2004

Control And Status Registers (CSRs)

d IXP2xxx has dozens of CSRs

d Provide access to hardware units on the chip

d Allow processors to

– Configure

– Control

– Interrogate

– Monitor

d Access

– XScale: mapped into address space

– Microengines: special instructions

NSD-Intel -- Chapt. 24 12 2004

Cap Instruction

d Used on microengines to access CSRs

d General form

cap [cmd, $xfer_data, csr_address]

d cmd is read, write, or fast_wr

NSD-Intel -- Chapt. 24 13 2004

High-Speed CSR Access

d Some CSRs reachable through fast data path

d Command fast_wr provides fast-path access

d General form

cap [fast_wr, immediate_data, CSR]

NSD-Intel -- Chapt. 24 14 2004

Reflection

d Move data from a transfer register on one microengine to a
transfer register on another microengine

d Uses cap instruction

d General form

cap [cmd, xfer, rem_ME, rem_reg, rem_ctx, ref_count]

NSD-Intel -- Chapt. 24 15 2004

Local CSRs

d Refer to individual microengine

d Can be accessed in single cycle

d Microengine issues local_csr_rd or local_csr_wr instruction

d Example

local_csr_wr [CSR, src]

NSD-Intel -- Chapt. 24 16 2004

Local CSRs

d Reading from local CSR requires two steps

local_csr_rd [CSR]

immed [destreg, 0]

NSD-Intel -- Chapt. 24 17 2004

Intel Dispatch Loop Macros

d Each microengine executes infinite loop

– Each iteration checks for event and processes event

– Events are low level (e.g., hardware device becomes
ready)

– Known as dispatch loop

d SDK includes over forty predefined macros related to
dispatch loop

NSD-Intel -- Chapt. 24 18 2004

Examples Of Predefined Dispatch Loop Macros

Macro Purpose222

dl_buf_init Initialize the buffer API
dl_buf_alloc Allocate a packet buffer
dl_buf_free Deallocate a packet buffer
dl_buf_get_desc Return SRAM pointer to metadata from a buffer
dl_buf_get_data Return DRAM pointer to buffer data area
dl_meta_init_cache Populate a metadata cache
dl_meta_flush_cache Flush metadata cache to SRAM
dl_meta_get_buffer_next Move to next buffer in a chain
dl_meta_get_offset Find offset of data within a buffer
dl_meta_get_free_list Find free list from which buffer was allocated
dl_meta_get_rx_stat Extract receive status from a buffer
dl_meta_get_buffer_size Find the size of data in a given buffer
dl_meta_get_packet_size Find the total size of a packet
dl_meta_get_input_port Find the input port over which packet arrived
dl_meta_set_output_port Set the output port to which packet will be sent

NSD-Intel -- Chapt. 24 19 2004

Traffic Management And Packet Scheduling

d Scheduing requires keeping one queue per scheduled flow

d Cannot be achieved with straightforward data pipeline

d Solution: add microblock outside main pipeline

NSD-Intel -- Chapt. 24 20 2004

Arrangement Of Microblocks When
Packet Scheduling Used

ingress
(RX)

egress
(TX)process queue

manager

scheduler

this stage can be
replicated

d Queue manager and scheduler operate independently

NSD-Intel -- Chapt. 24 21 2004

Accessing Packet Header Fields

d Microengine insturctions do not address memory directly

d Packet header loaded into transfer registers

d Many details

NSD-Intel -- Chapt. 24 22 2004

Example Header Access Code (Part 1)

/* Allocate eight DRAM transfer registers to hold the packet header */
xbuf_alloc [$$hdr, 8]

/* Reserve two general-purpose registers for the computation */
.begin
.reg base offset

/* Compute the DRAM address of the data buffer */
dl_buf_get_data [base, dl_buffer_handle]

/* Compute the byte offset of the start of the packet in the buffer */
dl_meta_get_offset [offset]

NSD-Intel -- Chapt. 24 23 2004

Example Header Access Code (Part 2)

/* Load thirty-two bytes of data from DRAM into eight DRAM */
/* transfer registers. Start at DRAM address base + offset */
dram [read, $$hdr0, base, offset, 4]

/* Inform the assembler that we have finished using the two */
/* registers: base and offset */
.end

/* Process the packet header in the DRAM transfer registers
/* starting at register $$hdr */

. . .

/* Free the DRAM transfer registers when finished */
xbuf_free [$$hdr]

NSD-Intel -- Chapt. 24 24 2004

Dispatch Loop And Associated Variables

d Typical operation

– Check for arrival of packet on Hardware Ring from
previous microengine

– Invoke procedure to process packet

– Place packet on Hardware Ring that leads to next
microengine

d Set of variables (registers) control operation of dispatch loop

NSD-Intel -- Chapt. 24 25 2004

Examples Of Intel Dispatch Loop Variables

Variable Size Value And Meaning22

exception_id 8 bits ID of an exception handler on the XScale
exception_code 8 bits A value passed with an exception packet
dl_next_block 8 bits ID of next logical block for a packet
dl_buf_handle 32 bits Buffer handle for start of the packet
dl_eop_buf_handle 32 bits Buffer handle for end of the packet
buffer_size 16 bits Length of the buffer containing the packet
packet_siz 16 bits Total length of packet (across all buffers)
buffer_offset 16 bits Offset of data from the start of the buffer
input_port 16 bits Logical port over which the packet arrived
rx_stat 4 bits Status flag bits (unicast, broadcast, etc.)
output_port_egress 24 bits Port over which packet is to be sent
output_port_fabric 8 bits Blade ID when multiple blades used
output_port_type 4 bits Hardware type of output interface
cache_flags 4 bits Control header caching (64 bytes of packet)
next_hop_id 32 bits ID of the next hop for the packet
flow_id 32 bits Flow ID for metering / policing
queue_id 16 bits Output queue for traffic management

NSD-Intel -- Chapt. 24 26 2004

Header Caching

d Packets reside in DRAM

d Accessing header fields is expensive

d To optimize access, copy header into Local Memory

d Think of copy as a cache

d SDK includes mechanisms to perfrom header caching

NSD-Intel -- Chapt. 24 27 2004

Packet I/O

d Physical frame divided into sixty-four octet units for transfer

d Each unit known as mpacket

d Division performed by interface hardware

d Microengine uses MSF interface to transfer each mpacket
separately

d Hardware set two bits in RBUF to specify whether

– Mpacket is first packet of a frame

– Mpacket is last packet of a frame

d Note: cell or small packet has both bits set

NSD-Intel -- Chapt. 24 28 2004

Packet I/O
(continued)

d No interrupts

d No DMA

d Dispatch loop in ingress or egress microblock uses polling

d Microengine performs transfer

NSD-Intel -- Chapt. 24 29 2004

Ingress Packet Transfer

d Incoming mpacket moved from Receive BUF into

– SRAM transfer registers

– Directly into DRAM

d DRAM transfer has form

msf [cmd, – –, addr1, addr2, count], tokens

NSD-Intel -- Chapt. 24 30 2004

Ingress Packet Transfer
(continued)

d Transfer to SRAM transfer register has the form

msf [cmd, $xfer, addr1, addr2, count]

NSD-Intel -- Chapt. 24 31 2004

Other I/O Details

d Microengine must

– Check status of mpacket to determine if

* MAC hardware detected problem (e.g., bad CRC)

* Mpacket arrived with no problems

– Check whether mpacket is first mpacket of a frame

NSD-Intel -- Chapt. 24 32 2004

Example Of Packet Processing

d If mpacket is first of a frame, branch to start_of_packet#

alu [– –, $rc, AND, 1]

br!=0 [start_of_packet#]

NSD-Intel -- Chapt. 24 33 2004

Summary

d Special hardware facilities support

– Hardware Queues and Rings

– Bit testing

– Atomic memory operations

– Sequencing and folding

– CSR access

d Microengine executes event loop known as dispatch loop

– Checks for packets arriving

– Calls macro(s) to process each packet

– Sends packets to next specified destination

NSD-Intel -- Chapt. 24 34 2004

Summary
(continued)

d Intel supplies large set of dispatch loop macros

d Intel’s SDK provides microblocks for ingress and egress

d Frame is divided into mpackets for transfer

d Hardware sets bits to specify whether incoming mpacket is
first or last of a frame

d Microengine can transfer mpacket to SRAM transfer
registers or diretly to DRAM

NSD-Intel -- Chapt. 24 35 2004

Questions?

XXV

An Example Program

NSD-Intel -- Chapt. 25 1 2004

We Will

d Consider an example

d Examine all the user-written code

d See how the pieces fit together

NSD-Intel -- Chapt. 25 2 2004

Choice Of Network System

d Used to demonstrate

– Basic concepts

– Code structure and organization

d Need to

– Minimize code size and complexity

– Avoid excessive detail

– Ignore performance optimizations

d Example: Network Address Translator (NAT)

NSD-Intel -- Chapt. 25 3 2004

NAT System Assumptions

d Only two connections: one to the ISP and one to a local
network

d Both connections are Ethernet

d Traffic restricted to

– TCP

– UDP

– ICMP echo and reply (ping)

d Applications do not pass IP address or protocol port
information in the data stream

NSD-Intel -- Chapt. 25 4 2004

NAT System Assumptions
(continued)

d System will not handle fragmented datagrams or datagrams
with IP options

d System will only handle communication initiated from local
computers (i.e., computers within the site)

d Use XScale to handle all exceptions

d Will translate port numbers as well as addresses (NAPT)

NSD-Intel -- Chapt. 25 5 2004

Conceptual NAT Topology

Internet

NAT

... computers

d NAT located between site and rest of Internet

d All packets between the site and the Internet pass through
the NAT box

NSD-Intel -- Chapt. 25 6 2004

Assumptions About Addresses

d Site has single valid IP address 192.168.0.2

d Default router at ISP has IP address 192.168.0.100

d Computers behind NAT box use net 10 addresses such as

– 10.0.0.1

– 10.0.0.5

– 10.0.0.13

NSD-Intel -- Chapt. 25 7 2004

Illustration Of NAT Addressing

ISP
10.0.0.0 / 8

NATrouter

...

computers using
nonroutable addresses192.168.0.2 10.0.0.1192.168.0.100

connection to
ISP (bridged)

NSD-Intel -- Chapt. 25 8 2004

NAT

d Changes fields in packet headers

– Source fields in outgoing packet

– Destination fields in incoming packet

d Uses a table to store translation information

NSD-Intel -- Chapt. 25 9 2004

Illustration Of NAT Translation Table

Local IP Local Port Remote IP Remote Port Protocol New Port
Address or ID Address or ID or ID222

10.0.0.2 29000 128.10.2.1 80 TCP 1180
10.0.0.3 29000 128.10.2.1 80 TCP 1239
10.0.0.4 12 192.5.3.1 – ICMP 1630

d Table shows three simultaneous connections

– Computer 10.0.0.2 contacts 128.10.2.1:80

– Computer 10.0.0.3 contacts 128.10.2.1:80

– Computer 10.0.0.4 pings 192.5.3.1

NSD-Intel -- Chapt. 25 10 2004

Ports, Identifiers, And Ping

d Each entry in NAT table corresponds to flow

d For TCP or UDP, flow is identified by

– Source IP address

– Source port number

– Destination IP address

– Destination port number

– Replacement source port used by NAT

– Protocol

NSD-Intel -- Chapt. 25 11 2004

Ports, Identifiers, And Ping
(continued)

d For ping, flow is identified by

– Source IP address

– ID value in packet

– Destination IP address

– Repalcement ID used by NAT

– Protocol

NSD-Intel -- Chapt. 25 12 2004

Dynamic NAT Table

d Outgoing packet used to create entry in NAT table

d Table is fixed size

d Consequence: when table is full, must delete old entry when
adding a new entry

NSD-Intel -- Chapt. 25 13 2004

NAT Table Management

d Each entry contains countdown timer field

d Timer value

– Reset whenever entry used

– Decremented every second

d When timer reaches zero, entry available for reuse

d When entry must be removed from full table, entry with
oldest timer value is selected (LRU)

NSD-Intel -- Chapt. 25 14 2004

Optimization

d To avoid arithmetic operations: use bit shift

d Timer value initialized with high-order bit set

d On each tick of the clock, shift right one bit

d When bit is shifted all the way to right, value becomes zero

NSD-Intel -- Chapt. 25 15 2004

Organization Of The Code

d Uses Intel’s RX and TX microblocks to receive and send
packets

d Single NAT microblock handles fast-path translation and
forwarding

d Core component handles exceptions.

NSD-Intel -- Chapt. 25 16 2004

Five Main Pieces Of Code

d Ingress (RX) microblock from Intel’s SDK

d NAT microblock to handle the fast data path

d Egress (TX) microblock from Intel’s SDK

d Core Component to handle exceptions ,User interface

NSD-Intel -- Chapt. 25 17 2004

Illustration Of Interconnections

ME 0x00 ME 0x01 ME 0x02

XScale

RX
microblock

NAT
microblock

TX
microblock

kernel thread
running

core component

user process
running

interface app.

RBUF
(MSF)

TBUF
(MSF)

explicit buffer free
for packet discard

Scratch ring
for exception

packets

two Scratch
rings

d Hardware rings used for interonnection

NSD-Intel -- Chapt. 25 18 2004

Purpose Of Core Component

d System initialization. The core component performs the
usual startup tasks by patching symbols in the microcode,
loading microcode into microengines, and allocating
memory.

d Exception packet processing. The core component handles
packets for which address translation fails, and inserts new
entries in the address translation table as necessary.

d Timer aging. Once each second, the core component
decrements the timer associated with each entry in the
address translation table.

d User interface interaction. The code component interacts
with the user interface application to provide information or
respond to commands.

NSD-Intel -- Chapt. 25 19 2004

ARP Processing

d ARP processing needed to find hardware addresses of

– Router at ISP

– Local computers

d Local computers

– Treat NAT box as default router

– Send ARP request

d Router at ISP

– Is default router for NAT box

– Expects to receive ARP request

NSD-Intel -- Chapt. 25 20 2004

Handling ARP

d NAT box assumes local computers will semd ARP requests

d Single ARP request sent to router at ISP

– Performed at startup

– Packets for the ISP are discarded until a response arrives

d Values left in ARP cache indefinitely

NSD-Intel -- Chapt. 25 21 2004

Implementation Of The NAT Microblock

d Poll POS_RX_RING_OUT in infinite loop

d When packet available, extract buffer pointer from ring

d Read and classify packet

– Place first 40 octets of packet in DRAM transfer
registers

– Nore: caching described later

d Check destination Ethernet address

d Verify packet is IP carrying TCP, UDP, or ping

NSD-Intel -- Chapt. 25 22 2004

Steps Taken In NAT Microblock (1)

do forever {
if (input ring nonempty) {

obtain buffer handle for next packet;
if (Ethernet destination address invalid)

discard the packet;
continue;

}
if (not an IP packet || not one of TCP,

UDP, or ICMP echo) {
send packet to core component;
continue;

}
if (packet originates from local computer) {

if (destination is local) {
send packet to core component;
continue;

}
Check NAT table for outgoing match;

NSD-Intel -- Chapt. 25 23 2004

Steps Taken In NAT Microblock (2)

} else /* packet originates from Internet */ {
if (destination is not the NAT system) {

send packet to core component;
continue;

}
Check NAT table for incoming match;

}
if (NAT table lookup failed) {

send packet to core component;
continue;

}

NSD-Intel -- Chapt. 25 24 2004

Steps Taken In NAT Microblock (3)

Replace fields in packet headers;
Perform ARP lookup and set the Ethernet source

address and Ethernet destination address;
Pass packet to TX microblock;

}

NSD-Intel -- Chapt. 25 25 2004

Header Caching And Alignment

d DRAM access extremely slow

d To optimize: cache packet header in Local memory

d Alignment

– Local memory optimized for access by multiples of 4
bytes

– Ethernet header contains 14 bytes

d Further performance enhancement: shift header right by two
bytes when moving to Local memory (and shift back when
storing in DRAM).

d Hardware instruction available

NSD-Intel -- Chapt. 25 26 2004

Summary Of Comparisons Performed

Field In Packet Header Field In NAT Table22

For outgoing packet (to the Internet)

Source IP address Local IP address
Source Port (or ID) Local Port or ID
Destination IP address Remote IP address
Destination Port (or ID) Remote Port or ID
IP Proto field Protocol

For incoming packet (from the Internet)

Source IP address Remote IP address
Source Port (or ID) Remote port or ID
Destination port (or ID) New Port or ID
IP Proto field Protocol

NSD-Intel -- Chapt. 25 27 2004

Implementation Of NAT Lookup

d Hashing used to identify bucket

– Extract fields from packet header

– Hash to get bucket number 0 through N–1

d Sequential search within bucket

NSD-Intel -- Chapt. 25 28 2004

Hashing Details

d Fields selected for hashing depend on direction of packet

d Two hash tables

– Forward table for packets traveling to the Internet
(f_nat_table)

– Reverse table for packets arriving from the Internet
(r_nat_table)

– Must be linked together

NSD-Intel -- Chapt. 25 29 2004

Fields In NAT Table Entry

Size Purpose222

1 byte Valid flag (only left-most bit is used)
1 byte protocol
2 bytes New port or ID
2 bytes Local port (or ID)
2 bytes Remote port (or ID)
4 bytes Local IP address
4 bytes Remote IP address

d Entry is exact multiple of DRAM access size

NSD-Intel -- Chapt. 25 30 2004

Auxiliary Parallel Arrays

d Store timers and pointers

d Are parallel to the hash tables: the i item in an auxiliary
table corresponds to the i item in a hash table

d Four auxiliary arrays used

– Timer for forward entries, f_timer

– Timer for reverse entries, r_timer

– Index for forward entries, f-index

– Index for reverse entries, r-index

NSD-Intel -- Chapt. 25 31 2004

Illustration Of Auxiliary Arrays

f_nat_table

r_nat_table

f_index

r_index

f_timer

r_timer

. .

. .
. .
. .

. .

. .
. .
. .

NSD-Intel -- Chapt. 25 32 2004

Header Fields That NAT Changes

Outgoing packet (to the Internet)

SOURCE IP ← NAT system IP address

SOURCE PORT (or ID) ← NAT New Port (or ID)

IP CHECKSUM ← Adjusted IP header checksum

TCP or UDP CHECKSUM ← Adjusted transport checksum

Incoming packet (from the Internet)

DEST. IP Address ← Local IP Address

DEST. PORT (or ID) ← Local Port (or ID)

IP CHECKSUM ← Adjusted IP header checksum

TCP or UDP CHECKSUM ← Adjusted transport checksum

NSD-Intel -- Chapt. 25 33 2004

Definition Of Constants For Entire System (1)

/* NAT_shared_defs.h - constants shared by microcode and core code */

#define NAT_DEF_MAJOR_NUMBER 50 /* major number of NAT psuedo-device */

#define NAT_DRIVER_NAME "NAT" /* Name of driver for NAT pseudo-device */

#define NAT_DEV_FILE "/dev/NAT" /* File name for NAT pseudo-device */

#define PORTS_NUM 2 /* number of network interfaces */

#define NAT_IFC 0 /* external interfaces to outside world */

#define GW_IP 0xC0A80064 /* Router’s IP address (192.168.0.100) */

#define NAT_CC_ID 65 /* ID of core component for exceptions */

/* Packet buffer parameters: 64MB of buffers, 2048 bytes per buffer */
#define NUM_BUFFERS 32*1024
#define BUF_SIZE 2048

/* Memory channels for free buffer list */
#define BUF_SRAM_CHAN 0
#define BUF_DRAM_CHAN 0

/* Counter sizes. These are implicitly defined in TX and RX building */
/* blocks. Namely, there are four 4-byte counters per port, which, for */
/* three ports gives 4*4*3=48 bytes for each counter region */
#define RX_CNTR_SIZE 48
#define TX_CNTR_SIZE 48

NSD-Intel -- Chapt. 25 34 2004

Definition Of Constants For Entire System (2)

/* NAT table size, which must be a power of two */
#define NAT_TABLE_SIZE 128*1024 /* 128K entries */

/* Hash bucket size for NAT table = 2̂ HASH_BUCKET_SHIFT */
#define HASH_BUCKET_SHIFT 3
#define HASH_BUCKET_SIZE (1<<HASH_BUCKET_SHIFT)

/* NAT table bit mask */
#define NAT_TABLE_BIT_MASK ((NAT_TABLE_SIZE>>HASH_BUCKET_SHIFT)-1)

/* ARP table size, which must be a power of two */
#define ARP_TABLE_SIZE 256

/* ARP table bit mask */
#define ARP_TABLE_BIT_MASK (ARP_TABLE_SIZE-1)

/* Ethernet packet types that are recognized */
#define ETH_ARP 0x0806 /* ARP */
#define ETH_IP 0x0800 /* IP */

/* IP protocol types that are recognized */
#define IPT_UDP 17
#define IPT_TCP 6
#define IPT_ICMP 1

/* ICMP message types that are recognized */
#define ICMP_ECHO_REQ 8
#define ICMP_ECHO_REP 0

NSD-Intel -- Chapt. 25 35 2004

Definition Of Constants For Entire System (3)

/* ARP operation types */
#define ARP_REQ 1
#define ARP_REP 2

/* timer aging interval in ms */
#define AGING_INTERVAL 1000 /* 1 sec */

/* maximum number of attempts to select a new (unused) NAT port value */
#define NEW_NPORT_ATTEMPS 30

/* maximum number of attempts to resolve gateway MAC address */
#define GW_MAC_RES_ATTEMPTS 3

/* number of microengines */
#define ME_NUM 8

/* size of one microengine cluster */
#define ME_CL_SZ 4

/* macro to represent Ethernet address as a byte array */
#define ETH2B(X) \
((char*)&(X))[0],((char*)&(X))[1],((char*)&(X))[2],((char*)&(X))[3],\
((char*)&(X))[4],((char*)&(X))[5]

/* macro to represent IP address as a byte array */
#define IP2B(X) \
((char*)&(X))[0],((char*)&(X))[1],((char*)&(X))[2],((char*)&(X))[3]

NSD-Intel -- Chapt. 25 36 2004

Constants And Types For The User Interface (1)

/* NAT_types.h - types used by the core component and user interface */

typedef struct nat_entry_s { /* an entry in a NAT table */
unsigned int valid : 1;
unsigned int unused : 7;
unsigned int prot : 8;
unsigned int nport : 16;
unsigned int lport : 16;
unsigned int rport : 16;
unsigned int ip_addr_loc;
unsigned int ip_addr_rem;

} nat_entry;

typedef struct arp_entry_s { /* an entry in the ARP cache */
unsigned int ip_addr;
unsigned int eth_w0;
unsigned short eth_w1;
unsigned short ifnum : 15;
unsigned short valid : 1;
unsigned int unused;

} arp_entry;

NSD-Intel -- Chapt. 25 37 2004

Constants And Types For The User Interface (2)

typedef struct net_if_s { /* network interface structure */
unsigned int ip_addr;
unsigned int eth_w0;
unsigned int eth_w1;

} net_if;

typedef enum nat_cmd_t { /* possible ioctl commands for */
/* the NAT pseudo-device */

SILENT=0, VERBOSE,
GET_RX_COUNTER, CLR_RX_COUNTER,
GET_TX_COUNTER, CLR_TX_COUNTER,
GET_ARP_TABLE, GET_NAT_TABLE, GET_TIMER_TABLE

} nat_cmd;
#define INVALID_CMD -1

NSD-Intel -- Chapt. 25 38 2004

Definitions Of Scratch Ring Constants

/* NAT_scratch_rings.h - constants used for Scratch Memory rings */

/* Ring used between the PACKET_RX and NAT microblocks */

#define PKT_RX_TO_NAT_SCR_RING 4
#define PKT_RX_TO_NAT_SCR_RING_SIZE IX_SCRATCH_RING_SIZE_1K

/* First ring for communicating between NAT and Packet TX microblocks */

#define PACKET_TX_SCR_RING_0 6
#define PACKET_TX_SCR_RING_0_SIZE IX_SCRATCH_RING_SIZE_256

/* Second ring for communicating between NAT and Packet TX microblocks */

#define PACKET_TX_SCR_RING_1 7
#define PACKET_TX_SCR_RING_1_SIZE IX_SCRATCH_RING_SIZE_256

/* Third ring for communicating between NAT and Packet TX microblocks */

#define PACKET_TX_SCR_RING_2 8
#define PACKET_TX_SCR_RING_2_SIZE IX_SCRATCH_RING_SIZE_256

/* Fourth ring for communicating between NAT and Packet TX microblocks */

#define PACKET_TX_SCR_RING_3 9
#define PACKET_TX_SCR_RING_3_SIZE IX_SCRATCH_RING_SIZE_256

NSD-Intel -- Chapt. 25 39 2004

Basic NAT Microblock (1)

/* NAT_microblock.uc - microcode for NAT processing */

/**/
/* Note: this file contains code for overall NAT processing, including */
/* code to obtain incoming packets from the packet_rx[] microblock, */
/* check the packet, perform NAT processing, if needed, and forward */
/* each packet to the correct transmit queue for the sphy_mphy4_tx[] */
/* microblock. */
/**/

#include <dl_system.h>
#include <stdmac.uc>
#include <dispatch_loop.uc>
#include <hardware.h>
#include <NAT_shared_defs.h>
#include <NAT_macros.uc>

/* Define NAT table location and parameters */
.import_var NAT_TABLE_BASE
#define_eval NAT_TABLE_BM NAT_TABLE_BIT_MASK
#define_eval HASH_BUCKET_SZ HASH_BUCKET_SIZE
#define_eval SHIFT_VAL 4+HASH_BUCKET_SHIFT
#define_eval NAT_TABLE_SZ NAT_TABLE_SIZE

/* Define ARP table location and parameters */
.import_var ARP_TABLE_BASE
#define_eval ARP_TABLE_BM ARP_TABLE_BIT_MASK

NSD-Intel -- Chapt. 25 40 2004

Basic NAT Microblock (2)

/* Define timer table location */
.import_var TIMER_TABLE_BASE

/* Obtain the default gateway IP address */
.import_var GATEWAY_IP_ADDR

/* Obtain configurations for each network interface */
.import_var IF0_IP
.import_var IF1_IP
.import_var IF0_ETH_W0
.import_var IF0_ETH_W1
.import_var IF1_ETH_W0
.import_var IF1_ETH_W1

#define_eval NAT_IP_ADDR IF/**/NAT_IFC/**/_IP

/* Define Local memory addresses */
#define STEP 64
#define LM_ADDR0_0 0
#define_eval LM_ADDR0_1 LM_ADDR0_0+STEP
#define_eval LM_ADDR0_2 LM_ADDR0_1+STEP
#define_eval LM_ADDR0_3 LM_ADDR0_2+STEP
#define_eval LM_ADDR0_4 LM_ADDR0_3+STEP
#define_eval LM_ADDR0_5 LM_ADDR0_4+STEP
#define_eval LM_ADDR0_6 LM_ADDR0_5+STEP
#define_eval LM_ADDR0_7 LM_ADDR0_6+STEP

NSD-Intel -- Chapt. 25 41 2004

Basic NAT Microblock (3)

/*********************************/
/* Specify signals and registers */
/*********************************/

.sig sig_scr_get ; signal for scratch get

.sig sig_scr_put ; signal for scratch put

.sig sig_pkt_hdr ; signal for packet header read

.sig sig_dram_wr ; signal for dram write done

.reg temp ; GPR for intermediate data

.reg zero ; GPR containing constant value 0

.reg one ; GPR containing constant value 1

.reg ring ; scratch ring

.reg port ; input port number

.reg $txreq ; tx request to put on scratch rings

.reg eth_ipt ; GPR containing ETH_IP constant (0x0800)

.reg NAT_ip ; GPR containing NAT box IP address

.reg ctx_num ; context number of the current thread

.reg if_out ; output interface to forward packet to

.reg EthDstW0 EthDstW1 ; Ethernet address registers

.reg f_nat_table ; GPR with NAT table base

.reg nat_tab_bit_mask ; GPR with NAT table bit mask (size - 1)

.reg r_nat_table ; GPR with reverse NAT table base

.reg arp_tab ; GPR with ARP table base

.reg arp_tab_bit_mask ; GPR with ARP table bit mask (size - 1)

.reg f_timer ; GPR with timer table base

.reg r_timer ; GPR with reverse timer table base

.reg gateway_ip ; GPR with default gateway IP address

.reg nat_port ; GPR with port to substitute

.reg if_ip if_eth_w0 if_eth_w1 ; network interface settings

.reg IpHlen IpSrc IpDst IpProt SrcPort DstPort ; flow 5-tuple

NSD-Intel -- Chapt. 25 42 2004

Basic NAT Microblock (4)

/* Allocation of transfer registers */
xbuf_alloc[$$pkt_hdr,2,read_write]
xbuf_alloc[$$entry_w,4,read_write]
xbuf_alloc[$$iphdr,10,read_write]
xbuf_alloc[$rdata, RX_TO_FUNC_MSG_SIZE, read]

/*********************************/
/* Data initialization */
/*********************************/

/* Frequently used constants */

immed[zero, 0] /* 0 */
immed[one, 1] /* 1 */
immed32(eth_ipt,ETH_IP) /* Ethernet type IP */

/* Constants that are specific to NAT */
immed32(NAT_ip,NAT_IP_ADDR)
immed32(f_nat_table,NAT_TABLE_BASE)
immed32(nat_tab_bit_mask,NAT_TABLE_BM)
immed32(arp_tab,ARP_TABLE_BASE)
immed32(arp_tab_bit_mask,ARP_TABLE_BM)
immed32(f_timer,TIMER_TABLE_BASE)
immed32(gateway_ip,GATEWAY_IP_ADDR)
#define_eval NAT_TABLE_SZ_B (NAT_TABLE_SZ<<4)
immed32(temp,NAT_TABLE_SZ_B)
alu[r_nat_table,f_nat_table,+,temp]
immed32(temp,NAT_TABLE_SZ)
alu[r_timer,f_timer,+,temp]

NSD-Intel -- Chapt. 25 43 2004

Basic NAT Microblock (5)

/* Byte alignment setting */
local_csr_wr[BYTE_INDEX,2]

/* Obtain the current context number */
local_csr_rd[active_ctx_sts]
immed[ctx_num,0]
alu[ctx_num, ctx_num, AND, 0x07]

/* Set a Local memory address */
.if (ctx()==0)

immed[temp,LM_ADDR0_0]
.elif (ctx()==1)

immed[temp,LM_ADDR0_1]
.elif (ctx()==2)

immed[temp,LM_ADDR0_2]
.elif (ctx()==3)

immed[temp,LM_ADDR0_3]
.elif (ctx()==4)

immed[temp,LM_ADDR0_4]
.elif (ctx()==5)

immed[temp,LM_ADDR0_5]
.elif (ctx()==6)

immed[temp,LM_ADDR0_6]
.else

immed[temp,LM_ADDR0_7]
.endif
local_csr_wr[ACTIVE_LM_ADDR_0,temp]

NSD-Intel -- Chapt. 25 44 2004

Basic NAT Microblock (6)

/*********************************/
/* Main loop */
/*********************************/
start#:

/* Read a packet from RX scratch ring */
alu_shf[ring, --, B, PKT_RX_TO_NAT_SCR_RING, <<2]
scratch[get,$rdata0,0,ring,RX_TO_FUNC_MSG_SIZE],

sig_done[sig_scr_get]

/* Reset the exception register */
alu[dl_exception_reg, --, b, 0]

/* Wait for the RX ring read to finish */
ctx_arb[sig_scr_get]

/* Check if ring is empty */
alu[--, $rdata0, -, 0]
beq[ring_empty#]

/* Ring is not empty */
alu[dl_buf_handle,--,b,$rdata0] /* set buffer handle */
alu[dl_eop_buf_handle, --,b,$rdata1] /* get eop parameter */
alu[dl_meta1,--,b,$rdata2] /* get data offset */
alu[port, 0xF, AND, $rdata4, >>16] /* get input port */

/* Ignore packets from ports other than 0 or 1 */
alu[--,port,-,PORTS_NUM]
bge[drop#]

NSD-Intel -- Chapt. 25 45 2004

Basic NAT Microblock (7)

/* Read the packet header (40 bytes) and assume Ethernet */
eth_iphdr_load(dl_buf_handle, sig_pkt_hdr)

/* If frame type is not IP, send to the core */
alu[temp,--,b,$$iphdr3,>>16]
alu[--,temp,xor,eth_ipt]
bne[exception#], defer[2] /* defer - save some cycles here */
alu[EthDstW0,--,b,$$iphdr0]
ld_field_w_clr[EthDstW1,1100,$$iphdr1]

/* At this point the code has an IP packet; check the type */
alu[IpProt,0xFF,and,$$iphdr5]
br=byte[IpProt,0,IPT_TCP,tcp_udp_icmp#] /* check for TCP */
br=byte[IpProt,0,IPT_UDP,tcp_udp_icmp#] /* check for UDP */
br!=byte[IpProt,0,IPT_ICMP,exception#] /* check for ICMP */

tcp_udp_icmp#:
/* The packet carries TCP, UDP or ICMP */

/* Find the network interface data for the input port */
net_if_data_get(port,if_ip,if_eth_w0,if_eth_w1)

/* Verify that the Ethernet destination matches our address */
alu[--,if_eth_w0,xor,EthDstW0]
bne[exception#],defer[1]
alu[--,if_eth_w1,xor,EthDstW1]
bne[exception#],defer[2]

NSD-Intel -- Chapt. 25 46 2004

Basic NAT Microblock (8)

/* Compute the IP header size */
alu[IpHlen,0xF,and,$$iphdr3,>>8]

/* To simplify the code, we do not deal with IP options. */
/* If options are present, drop the packet */
alu[--,IpHlen,-,5]
bgt[exception#],defer[3]

/* Store a copy of the IP header in local memory */
byte_align_be[--,$$iphdr3]
byte_align_be[*l$index0[0],$$iphdr4]
byte_align_be[*l$index0[1],$$iphdr5]
byte_align_be[*l$index0[2],$$iphdr6]
byte_align_be[*l$index0[3],$$iphdr7]
byte_align_be[*l$index0[4],$$iphdr8]
byte_align_be[*l$index0[5],$$iphdr9]
byte_align_be[*l$index0[6],0]

/* Obtain the IP source and destination addresses */
alu[IpDst,--,b,*l$index0[4]]
alu[--,if_ip,xor,IpDst]
/* Branch if destination IP is local (i.e., the NAT box) */
beq[local_dst#],defer[1]
alu[IpSrc,--,b,*l$index0[3]]

NSD-Intel -- Chapt. 25 47 2004

Basic NAT Microblock (9)

/* At this point the packet conains TCP,UDP or ICMP, and has */
/* a non-local destination address. If the packet is incoming, */
/* drop it. If the packet is outgoing, perform NAT translation */
/* and send the packet to the Internet. */
alu[--,port,xor,NAT_IFC]
beq[exception#]

/* Read the source and destination ports (or ICMP type and ID) */
read_src_and_dst_ports(NON_LOCAL_DST,IpHlen,IpProt,

SrcPort,DstPort)
.if (IpProt == IPT_ICMP)

/* If the packet is ICMP, but not an echo request, */
/* send the packet to the core as an exception */
alu[--,DstPort,xor,ICMP_ECHO_REQ]
bne[exception#],defer[1]
alu[DstPort,--,b,0]

.endif
/* Perfrom NAT lookup for an outgoing packet */
nat_lookup_outgoing(IpSrc,SrcPort,IpDst,DstPort,IpProt,

nat_port,if_out)
alu[SrcPort,--,b,nat_port]

NSD-Intel -- Chapt. 25 48 2004

Basic NAT Microblock (10)

tx_pkt#:
/* If NAT lookup failed, send the packet to core */
/* as an exception */
alu[--,--,~b,nat_port]
beq[exception#]

.set if_out /* inserted to prevent an assembler warning */

/* At this point, NAT lookup has been successful, and the ARP */
/* table must be consulted to determine the correct Ethernet */
/* address for the frame. */
alu[dl_exception_reg, --, b, 1,<<10]
arp_lookup(if_out,IpDst,EthDstW0,EthDstW1)
alu[dl_exception_reg, --, b, 0]

/* Modify the packet header */
modify_and_save_packet_header(if_out,EthDstW0,EthDstW1,IpHlen,

IpProt,IpSrc,IpDst,SrcPort,DstPort)

/* Create a TX request for transmit queue */
alu[temp, --, b, if_out, <<24] /* 27:24 output port */
ld_field[temp, 0111, dl_buf_handle] /* 23:00 buffer handle */
alu[$txreq, temp, OR, one, <<31] /* 31 valid bit */

/* bits 31:28 reserved */

/* Jump to Scratch ring write for the corresponding port */
alu[temp, --, b, if_out, <<2]
jump[temp,write_ring0#],targets[write_ring0#,write_ring1#,\

write_ring2#,write_ring3#]

NSD-Intel -- Chapt. 25 49 2004

Basic NAT Microblock (11)

write_ring0#:
write_tx_ring(0,start#)

write_ring1#:
write_tx_ring(1,start#)

write_ring2#:
write_tx_ring(2,start#)

write_ring3#:
write_tx_ring(3,start#)

/* If Scratch ring is full -- wait voluntarily */
full_ring0#:

ctx_arb[voluntary],br[write_ring0#]
full_ring1#:

ctx_arb[voluntary],br[write_ring1#]
full_ring2#:

ctx_arb[voluntary],br[write_ring2#]
full_ring3#:

ctx_arb[voluntary],br[write_ring3#]

local_dst#:
/* If the Destination IP address in an incoming datagram is */
/* not the address of the NAT box address, send the packet */
/* to the core as an exception. */
alu[--,IpDst,xor,NAT_ip]
bne[exception#]

NSD-Intel -- Chapt. 25 50 2004

Basic NAT Microblock (12)

/* At this point the incoming packet contains TCP, UDP, */
/* or ICMP and has a local IP destination. Read the source */
/* and destination ports. */
read_src_and_dst_ports(NON_LOCAL_SRC,IpHlen,IpProt,

SrcPort,DstPort)
.if (IpProt == IPT_ICMP)

/* If the packet is ICMP, but not an echo reply, */
/* send the packet to the core as an exception. */
alu[--,SrcPort,xor,ICMP_ECHO_REP]
bne[exception#],defer[1]
alu[SrcPort,--,b,0]

.endif
/* Perform NAT lookup for an incoming packet */
nat_lookup_incoming(IpDst,DstPort,IpSrc,SrcPort,IpProt,

nat_port,if_out)
alu[DstPort,--,b,nat_port]
br[tx_pkt#] /* jump to the transmission code */

NSD-Intel -- Chapt. 25 51 2004

Basic NAT Microblock (13)

exception#:
/* send to the NAT core component */
dl_exception_set(NAT_CC_ID, 0)
/* this is a packet (not message) */
dl_exception_set_priority(0)
dl_exception_send(dl_buf_handle)

ring_empty#:
br[start#] /* jump back to the main loop to continue probing */

drop#: /* Drop the packet by freeing its buffer */
dl_buf_free(dl_buf_handle,BUF_FREE_LIST0)
br[start#] /* go back to the main loop start */

NSD-Intel -- Chapt. 25 52 2004

Macros Used To Implement NAT (1)

/* NAT_macros.uc - Microassembly macros used with NAT */

/***/
/* Macro to read source and destination ports from UDP or TCP packet */
/***/

#macro read_src_and_dst_ports(callsite,hdr_len,IpProt,SrcPort,DstPort)
.begin
.reg buf_offset sdram_offset pkt_offset
/* assume no IP options */
.if (IpProt == IPT_ICMP)

#if (streq(callsite,’NON_LOCAL_SRC’))
alu[DstPort,--,b,*l$index0[6],>>16]
alu[SrcPort,0xFF,and,*l$index0[5],>>24]

#else
alu[SrcPort,--,b,*l$index0[6],>>16]
alu[DstPort,0xFF,and,*l$index0[5],>>24]

#endif
.else

alu[SrcPort,--,b,*l$index0[5],>>16]
ld_field_w_clr[DstPort,0011,*l$index0[5]]

.endif

.end
#endm

NSD-Intel -- Chapt. 25 53 2004

Macros Used To Implement NAT (2)

/***/
/* Macro to do NAT lookup for packet with local src */
/***/

#macro nat_lookup_outgoing(ip_addr_loc,lport,ip_addr_rem,\
rport,prot,nport,if_out)

.begin

.reg cnt tmp offset entry_w1 tm_offset $timer_bm

.sig hash_done read_done write_done
xbuf_alloc[$hash128_w,4,read_write]
/* hash IP address, port and protocol */
alu[$hash128_w0,--,b,ip_addr_rem]
alu[$hash128_w1,--,b,ip_addr_loc]
alu[entry_w1,rport,or,lport,<<16]
alu[$hash128_w2,--,b,entry_w1]
alu[$hash128_w3,--,b,prot]
hash_128[$hash128_w0,1], sig_done[hash_done]
alu[cnt,--,b,zero]
alu[nport,--,~b,zero]
ctx_arb[hash_done]
/* compute the hash value mod the number of buckets */
/* in the hash table */
alu[offset,$hash128_w0,and,nat_tab_bit_mask]
/* computer byte offset into NAT table */
alu[offset,--,b,offset,<<SHIFT_VAL]
alu[offset,offset,-,16]

NSD-Intel -- Chapt. 25 54 2004

Macros Used To Implement NAT (3)

/* search the bucket linearly */
search_start#:

alu[--,HASH_BUCKET_SZ,-,cnt]
ble[search_done#]
alu[offset,offset,+,16]
dram[read,$$entry_w0,f_nat_table,offset,2],

sig_done[read_done]
ctx_arb[read_done]
/* Verify that values in the entry match the */
/* search keys */
/* check valid bit */
br_bclr[$$entry_w0,31,search_start#],defer[3]
alu[cnt,cnt,+,one]
alu[tmp,0xFF,and,$$entry_w0,>>16]
alu[--,tmp,xor,prot] /* check protocol */
bne[search_start#],defer[3]
alu[tm_offset,--,b,offset,>>4]
alu[tmp,tm_offset,and,3]
alu[--,$$entry_w1,xor,entry_w1] /* check ports */
bne[search_start#],defer[3]
alu[tmp,--,b,tmp,<<3]
alu[tmp,31,-,tmp]
alu[--,$$entry_w2,xor,ip_addr_loc] /* check local IP */
bne[search_start#],defer[3]
alu[--,tmp,or,zero] /* dummy instruction for */

/* indirect shift */
alu[$timer_bm,--,b,one,<<indirect]
alu[--,$$entry_w3,xor,ip_addr_rem] /* check remote IP */
bne[search_start#]

NSD-Intel -- Chapt. 25 55 2004

Macros Used To Implement NAT (4)

/* at this point, the code has found a match in the NAT */
/* table, and must update timer for the entry */
sram[set,$timer_bm,f_timer,tm_offset],sig_done[write_done]
ld_field_w_clr[nport,0011,$$entry_w0]
alu[if_out,--,b,NAT_IFC]
alu[ip_addr_loc,--,b,NAT_ip]
ctx_arb[write_done]

search_done#:
.end

#endm

NSD-Intel -- Chapt. 25 56 2004

Macros Used To Implement NAT (5)

/***/
/* Macro to perform NAT lookup for a packet with a local destination */
/***/
#macro nat_lookup_incoming(ip_addr_loc, nport,ip_addr_rem, rport, \

prot, lport, if_out)
.begin
.reg cnt tmp offset port_tmp tm_offset $timer_bm
.sig hash_done read_done write_done
xbuf_alloc[$hash128_w,4,read_write]
/* hash IP address, port and protocol */
alu[$hash128_w0,--,b,ip_addr_rem]
alu[$hash128_w1,rport,or,nport,<<16]
alu[$hash128_w2,--,b,prot]
alu[$hash128_w3,--,b,zero]
hash_128[$hash128_w0,1], sig_done[hash_done]
alu[cnt,--,b,zero]
alu[lport,--,~b,zero]
ctx_arb[hash_done]
/* compute the hash value mod the number of buckets */
/* in the hash table */
alu[offset,$hash128_w0,and,nat_tab_bit_mask]
/* compute byte offset into NAT table */
alu[offset,--,b,offset,<<SHIFT_VAL]
alu[offset,offset,-,16]

NSD-Intel -- Chapt. 25 57 2004

Macros Used To Implement NAT (6)

/* search the bucket linearly */
search_start#:

alu[--,HASH_BUCKET_SZ,-,cnt]
ble[search_done#]
alu[offset,offset,+,16]
dram[read,$$entry_w0,r_nat_table,offset,2],

sig_done[read_done]
ctx_arb[read_done]
/* Verify that values in the entry match */
/* the search keys */
/* check valid bit */
br_bclr[$$entry_w0,31,search_start#],defer[3]
alu[cnt,cnt,+,one]
alu[tmp,0xFF,and,$$entry_w0,>>16]
alu[--,tmp,xor,prot] /* check protocol */
bne[search_start#],defer[3]
alu[tm_offset,--,b,offset,>>4]
alu[port_tmp,0,+16,$$entry_w1]
alu[--,port_tmp,xor,rport] /* check remote port */
bne[search_start#],defer[3]
alu[tmp,tm_offset,and,3]
alu[port_tmp,0,+16,$$entry_w0]
/* check NAT (destination) port */
alu[--,port_tmp,xor,nport]
bne[search_start#],defer[3]
alu[tmp,--,b,tmp,<<3]
alu[tmp,31,-,tmp]
alu[--,$$entry_w3,xor,ip_addr_rem] /* check remote IP */
bne[search_start#],defer[2]

NSD-Intel -- Chapt. 25 58 2004

Macros Used To Implement NAT (7)

alu[--,tmp,or,zero] /* dummy instruction for */
/* indirect shift */

alu[$timer_bm,--,b,one,<<indirect]
/* at this point, the code has found a match in the NAT */
/* table, and must update timer for the entry */
sram[set,$timer_bm,r_timer,tm_offset],sig_done[write_done]
alu[if_out,one,+,NAT_IFC] /* so that if_out!=NAT_IFC */
alu[ip_addr_loc,--,b,$$entry_w2]
alu[lport,--,b,$$entry_w1,>>16]
ctx_arb[write_done]

search_done#:
.end

#endm

/***/
/* Macro to read Ethernet and IP headers from DRAM */
/***/
#macro eth_iphdr_load(buf_handle, req_sig)

.begin

.reg sdram_offset buf_offset
/* Read 40 bytes of ETH/IP Header from DRAM */
/* (DRAM reads are in quadwords -- 8 bytes */
dl_buf_get_data[sdram_offset, buf_handle]
dl_meta_get_offset[buf_offset]
dram[read,$$iphdr0,sdram_offset,buf_offset,5],sig_done[req_sig]
ctx_arb[req_sig]
.end

#endm

NSD-Intel -- Chapt. 25 59 2004

Macros Used To Implement NAT (8)

/***/
/* Macro to write modified Ethernet and IP headers from Local */
/* memory back into DRAM */
/***/
#macro eth_iphdr_store(sdram_offset, buf_offset, req_sig)

byte_align_be[--,eth_ipt]
byte_align_be[$$iphdr3,*l$index0[0]]
byte_align_be[$$iphdr4,*l$index0[1]]
byte_align_be[$$iphdr5,*l$index0[2]]
byte_align_be[$$iphdr6,*l$index0[3]]
byte_align_be[$$iphdr7,*l$index0[4]]
byte_align_be[$$iphdr8,*l$index0[5]]
byte_align_be[$$iphdr9,*l$index0[6]]
dram[write,$$iphdr0,sdram_offset,buf_offset,5],sig_done[req_sig]

#endm

NSD-Intel -- Chapt. 25 60 2004

Macros Used To Implement NAT (9)

/***/
/* Macro to update IP checksum */
/* cksum_new = cksum_old + old_val + ~new_val */
/***/
#macro cksum_upd(cksum,old_val,new_val)

.begin

.reg x not_new_val
alu[x,--,b,old_val,>>16]
alu[cksum,cksum,+,x]
alu[cksum,cksum,+16,old_val]
alu[not_new_val,--,~b,new_val]
alu[x,--,b,not_new_val,>>16]
alu[cksum,cksum,+,x]
alu[cksum,cksum,+16,not_new_val]
.end

#endm
/***/
/* Macro to add carry into checksum */
/* cksum = cksum>>16 + cksum&0xffff */
/* cksum = cksum>>16 + cksum&0xffff */
/***/
#macro cksum_carry(cksum)

.begin

.reg x
alu[x,--,b,cksum,>>16]
alu[cksum,x,+16,cksum]
alu[x,--,b,cksum,>>16]
alu[cksum,x,+16,cksum]
.end

#endm

NSD-Intel -- Chapt. 25 61 2004

Macros Used To Implement NAT (10)

/***/
/* Macro to modify and store Eth frame header, IP packet header */
/* and UDP, TCP, or ICMP packet header */
/***/
#macro modify_and_save_packet_header(if_out,EthDstW0,EthDstW1,IpHlen,\

IpProt,IpSrc,IpDst,SrcPort,DstPort)
.begin
.reg tmp cksum buf_offset pkt_offset sdram_offset
.reg if_ip if_eth_w0 if_eth_w1 oldId oldPorts oldIpSrc oldIpDst
.sig dram_rd dram_wr1 dram_wr2

/* Compute sdram offset for the buffer */
dl_buf_get_data[sdram_offset, dl_buf_handle]

/* Set the Ethernet header */
net_if_data_get(if_out,if_ip,if_eth_w0,if_eth_w1)
alu[$$iphdr0,--,b,EthDstW0]
alu[$$iphdr1,EthDstW1,or,if_eth_w0,>>16]
dbl_shf[$$iphdr2,if_eth_w0,if_eth_w1,>>16]

/* Update the IP header */
ld_field_w_clr[cksum,0011,*l$index0[2]]
alu[oldIpSrc,--,b,*l$index0[3]]
alu[oldIpDst,--,b,*l$index0[4]]
/* calculate new checksum */
cksum_upd(cksum,oldIpSrc,IpSrc)
cksum_upd(cksum,oldIpDst,IpDst)
cksum_carry(cksum)

NSD-Intel -- Chapt. 25 62 2004

Macros Used To Implement NAT (11)

/* Save the new checksum and IP addresses */
ld_field[*l$index0[2],0011,cksum]
alu[*l$index0[3],--,b,IpSrc]
alu[*l$index0[4],--,b,IpDst]

/* Update the TCP, UDP, or ICMP header. Note: we assume that */
/* the datagram does not contain IP options */
.if (IpProt == IPT_ICMP)

/* Update the ICMP header */
ld_field_w_clr[cksum,0011,*l$index0[5]]
alu[oldId,--,b,*l$index0[6],>>16]
.if (IpSrc == NAT_ip)

cksum_upd(cksum,oldId,SrcPort)
ld_field[*l$index0[6],1100,SrcPort,<<16]

.else
cksum_upd(cksum,oldId,DstPort)
ld_field[*l$index0[6],1100,DstPort,<<16]

.endif
cksum_carry(cksum)
ld_field[*l$index0[5],0011,cksum]
dl_meta_get_offset[buf_offset]
/* Save the modified Ethernet and IP headers */
eth_iphdr_store(sdram_offset,buf_offset,dram_wr1)

NSD-Intel -- Chapt. 25 63 2004

Macros Used To Implement NAT (12)

.else
/* Update the TCP or UDP header */
dl_meta_get_offset[buf_offset]
.if (IpProt == IPT_TCP)

alu[pkt_offset,buf_offset,+,48]
.else

alu[pkt_offset,buf_offset,+,40]
.endif
/* Read the old UDP or TCP checksum */
dram[read,$$pkt_hdr0,sdram_offset,pkt_offset,1],

sig_done[dram_rd]
alu[oldPorts,--,b,*l$index0[5]]
alu[*l$index0[5],DstPort,or,SrcPort,<<16]
/* Save the modified Ethernet and IP headers */
eth_iphdr_store(sdram_offset,buf_offset,dram_wr1)
/* Wait for the checksum to be read */
ctx_arb[dram_rd]
.if (IpProt == IPT_TCP)

ld_field_w_clr[cksum,0011,$$pkt_hdr0]
.else

alu[cksum,--,b,$$pkt_hdr0,>>16]
/* If UDP checksum is 0, no update needed */
alu[--,cksum,xor,zero]
bne[wait#]

.endif
cksum_upd(cksum,oldIpSrc,IpSrc)
cksum_upd(cksum,oldIpDst,IpDst)

NSD-Intel -- Chapt. 25 64 2004

Macros Used To Implement NAT (13)

alu[tmp,DstPort,or,SrcPort,<<16]
cksum_upd(cksum,oldPorts,tmp)
cksum_carry(cksum)
.if (IpProt == IPT_TCP)

alu[tmp,--,b,cksum]
ld_field[tmp,1100,$$pkt_hdr0]

.else
alu[tmp,--,b,cksum,<<16]
ld_field[tmp,0011,$$pkt_hdr0]

.endif
alu[$$pkt_hdr0,--,b,tmp]
alu[$$pkt_hdr1,--,b,$$pkt_hdr1]
dram[write,$$pkt_hdr0,sdram_offset,pkt_offset,1],

sig_done[dram_wr2]
ctx_arb[dram_wr1,dram_wr2],br[done#]

.endif
wait#:

ctx_arb[dram_wr1]
done#:

.end
#endm

NSD-Intel -- Chapt. 25 65 2004

Macros Used To Implement NAT (14)

/***/
/* Macro to obtain a copy of network interface settings */
/***/
#macro net_if_data_get(ifnum,if_ip,if_eth_w0,if_eth_w1)

alu[temp,--,b,ifnum,<<3]
jump[temp, if_0#], targets[if_0#,if_1#]
/* set network interface parameters */

if_0#:
immed[if_ip, IF0_IP]
immed_w1[if_ip, IF0_IP>>16]
immed[if_eth_w0,IF0_ETH_W0]
immed_w1[if_eth_w0,IF0_ETH_W0>>16]
br[end_of_if_table#],defer[2]
immed[if_eth_w1,IF0_ETH_W1]
immed_w1[if_eth_w1,IF0_ETH_W1>>16]
nop /* added for alignment */

if_1#:
immed[if_ip, IF1_IP]
immed_w1[if_ip, IF1_IP>>16]
immed[if_eth_w0,IF1_ETH_W0]
immed_w1[if_eth_w0,IF1_ETH_W0>>16]
immed[if_eth_w1,IF1_ETH_W1]
immed_w1[if_eth_w1,IF1_ETH_W1>>16]

end_of_if_table#:
#endm

NSD-Intel -- Chapt. 25 66 2004

Macros Used To Implement NAT (15)

/***/
/* Macro to perform ARP table lookup */
/***/
#macro arp_lookup(port,IpDst,EthAddrW0,EthAddrW1)

.begin

.reg ip_addr cnt tmp offset $hash48_w0 $hash48_w1

.reg $entry_w0 $entry_w1 $entry_w2

.sig hash_done read_done

.xfer_order $hash48_w0 $hash48_w1

.xfer_order $entry_w0 $entry_w1 $entry_w2

.if (port == NAT_IFC)
alu[ip_addr,--,b,gateway_ip]

.else
alu[ip_addr,--,b,IpDst]

.endif
/* Hash the IP address */
alu[$hash48_w0,--,b,ip_addr]
alu[$hash48_w1,--,b,zero]
hash_48[$hash48_w0,1], sig_done[hash_done]
alu[cnt,--,b,zero]
ctx_arb[hash_done]
/* Compute the hash value mod the size of the ARP table */
alu[offset,$hash48_w0,and,arp_tab_bit_mask]
/* Compute the byte offset into the ARP table */
alu[offset,--,b,offset,<<4]
/* Adjust the start of the table */
alu[offset,offset,-,16]

NSD-Intel -- Chapt. 25 67 2004

Macros Used To Implement NAT (16)

/* Search the table sequentially */
arp_search_start#:

alu[--,arp_tab_bit_mask,-,cnt]
blt[exception#] /* lookup failed */
alu[offset,offset,+,16]
alu[offset,offset,and,arp_tab_bit_mask,<<4]
sram[read,$entry_w0,arp_tab,offset,3],ctx_swap[read_done]
alu[--,$entry_w0,xor,ip_addr]
bne[arp_search_start#],defer[1]
alu[cnt,cnt,+,one]
br_bclr[$entry_w2,0,arp_search_start#]

arp_search_end#:
/* Set the word 0 of the Ethernet address */
alu[EthAddrW0,--,b,$entry_w1]
/* Set word 1 of the Ethernet address */
ld_field_w_clr[EthAddrW1,1100,$entry_w2]
/* Set the output port */
ld_field_w_clr[if_out,0011,$entry_w2,>>1]
.end

#endm

/***/
/* Macro to write the current packet on the TX ring */
/***/
#macro write_tx_ring(ring_num,label)
#define_eval RN PACKET_TX_SCR_RING_/**/ring_num

br_inp_state[SCR_RING/**/RN/**/_FULL, full_ring/**/ring_num/**/#]
scratch[put,$txreq,zero,(RN<<2),1],sig_done[sig_scr_put]
ctx_arb[sig_scr_put],br[label]

#endm

NSD-Intel -- Chapt. 25 68 2004

Core Component Responsibilities

d Initialization (performed once at startup)

d Processing exception packets

– ARP request with the NAT system as the target

– ICMP echo request with the NAT system as the
destination

– TCP, UDP, or ICMP Echo, packet for which no NAT
table entry exists

– Note: other packets are dropped

d Processing requests from the user interface

d Cleanup (performed once at shutdown)

NSD-Intel -- Chapt. 25 69 2004

Core Component Implementation

d Divided into three files

d Conceptual purpose

– Initialization and driver for pseudo device

– Packet handler

– Definitions of protocol headers (include file)

NSD-Intel -- Chapt. 25 70 2004

Core Initialization And Pseudo-Device Driver (1)

/* NAT_pseudo_dev.c - NAT core comp. & driver (Linux kernel module) */

#include <linux/kernel.h> /* Code runs in the Linux kernel */
#include <linux/module.h> /* The code runs as a kernel module */
#include <linux/fs.h> /* NAT pseudo device is a character device */
#include <asm/uaccess.h> /* Needed for communication with user space */

#include <enpv2_types.h>

#include <ix_rm.h> /* Code uses the IXA Resource Manager */
#undef LINUX /* Prevents the compiler from complaining */
#include <ix_cc.h> /* Code uses the IXA CCI */
#include <ix_cci.h>

#include "NAT_shared_defs.h"
#include "NAT_types.h"
#include "NAT_scratch_rings.h"

#define ME_MASK 0x07 /* system uses microengines 0, 1 and 2 */
#define CONTEXT_MASK 255 /* context mask -- enable all contexts */

#define HASH_MULT_W0 0x12345678 /* hash multiplier -- word 0 */
#define HASH_MULT_W1 0x87654321 /* hash multiplier -- word 1 */
#define HASH_MULT_W2 0x56781234 /* hash multiplier -- word 2 */
#define HASH_MULT_W3 0x43218765 /* hash multiplier -- word 3 */

NSD-Intel -- Chapt. 25 71 2004

Core Initialization And Pseudo-Device Driver (2)

/* macro to log error message and terminate resource manager */
#define panic(...) { printk("%s: ",NAT_DRIVER_NAME);\

printk(__VA_ARGS__);\
ix_rm_term();\
unregister_chrdev(NAT_major, NAT_DRIVER_NAME);\
return(-1); }

/* macro to clear block of kernel memory */
#define bzero(buf,size) ix_ossl_memset(buf,0,size)

/* macro to convert microengine sequence number */
/* into microengine ID */
#define ME_ID(i) ((i%ME_CL_SZ)|((i/ME_CL_SZ)<<4))

/* macro to convert SRAM offset and memory channel into */
/* microengine addressing */
#define ME_SRAM_ADDR(offset,memChan)\
((memChan)?(offset|(0x20000000<<memChan)):offset)

/* Module parameter -- a UOF file name */
static char * Uof_file;
/* Module parameter -- Linux major device number for NAT psuedo device */
static unsigned int NAT_major = NAT_DEF_MAJOR_NUMBER;

MODULE_AUTHOR("Internetworking Lab, CS, Purdue University");
MODULE_DESCRIPTION("NAT pseudo-device driver for IXP2XXX");
MODULE_PARM(Uof_file, "s");
MODULE_PARM(NAT_major,"i");

NSD-Intel -- Chapt. 25 72 2004

Core Initialization And Pseudo-Device Driver (3)

/* Static gateway IP address */
unsigned int gateway_ip= GW_IP;

/* Static network interface configuration */
net_if iface_table[PORTS_NUM]={

{0xC0A80002 /* 192.168.0.2 */,
0x01010101,0x01010000 /* 01:01:01:01:01:01 */},
{0x0A000001 /* 10.0.0.1 */,
0x02020202,0x02020000 /* 02:02:02:02:02:02 */} };

/* External procedures */

extern ix_error nat_pkt_handler(ix_buffer_handle,ix_uint32,void*);
extern ix_error resolve_arp(unsigned int);

/* Local procedures */

static int patch_microblocks(ix_buffer_free_list_info);
static int create_scr_rings();
static int init_hash();
static ix_error nat_table_timer(void*);
static ix_error exe_init_f(ix_exe_handle,void**);
static ix_error exe_fini_f(ix_exe_handle,void*);
static ix_error cc_init_f(ix_cc_handle,void**);
static ix_error cc_fini_f(ix_cc_handle,void*);
static ix_exe_handle exeHandle;
static ix_cc_handle ccHandle;
static ix_event_handle eveHandle;
static int nat_open(struct inode *, struct file *);

NSD-Intel -- Chapt. 25 73 2004

Core Initialization And Pseudo-Device Driver (4)

static int nat_release(struct inode *, struct file *);
static int nat_ioctl(struct inode *, struct file *,

unsigned int, unsigned long);

/* Verbosity level */
int verb=SILENT;

/* Pointers to various run-time data structures */
nat_entry *f_nat_table, *r_nat_table;
unsigned int *f_index,*r_index;
arp_entry *arp_table;
unsigned char *f_timer, *r_timer;
void *rx_cntr, *tx_cntr;

/* Scratch rings */
ix_hw_ring_handle rxToNatRing, txScrRing[4];

/* List of free buffers */
ix_buffer_free_list_handle hwFreeList = 0;

/* Operations for the NAT pseudo-device */
static struct file_operations nat_fops = {

ioctl: nat_ioctl,
open: nat_open,
release: nat_release

};

NSD-Intel -- Chapt. 25 74 2004

Core Initialization And Pseudo-Device Driver (5)

static int nat_open(struct inode *inode, struct file *filp)
{

MOD_INC_USE_COUNT;
return 0;

}
static int nat_release(struct inode *inode, struct file *filp)
{

MOD_DEC_USE_COUNT;
return 0;

}

static int nat_ioctl(struct inode *inode, struct file *fp,
unsigned int cmd, unsigned long buf)

{
switch (cmd) {

case SILENT:
verb = SILENT;
break;

case VERBOSE:
verb = VERBOSE;
break;

case GET_ARP_TABLE:
if ((char *)buf != NULL)

return copy_to_user((char *)buf,arp_table,
ARP_TABLE_SIZE*sizeof(arp_entry));

break;

NSD-Intel -- Chapt. 25 75 2004

Core Initialization And Pseudo-Device Driver (6)

case GET_NAT_TABLE:
if ((char *)buf != NULL)

return copy_to_user((char *)buf,
(void*)f_nat_table,
NAT_TABLE_SIZE*sizeof(nat_entry));

break;
case GET_TIMER_TABLE:

if ((char *)buf != NULL)
return copy_to_user((char *)buf,

(void*)f_timer, 2*NAT_TABLE_SIZE);
break;

case GET_RX_COUNTER:
if ((char *)buf != NULL)

return copy_to_user((char *)buf,rx_cntr,
RX_CNTR_SIZE);

break;
case GET_TX_COUNTER:

if ((char *)buf != NULL)
return copy_to_user((char *)buf,tx_cntr,

TX_CNTR_SIZE);
break;

case CLR_RX_COUNTER:
bzero(rx_cntr,RX_CNTR_SIZE);
break;

case CLR_TX_COUNTER:
bzero(tx_cntr,TX_CNTR_SIZE);
break;

default:
return INVALID_CMD;

}

NSD-Intel -- Chapt. 25 76 2004

Core Initialization And Pseudo-Device Driver (7)

return 0;
}

int init_module()
{

ix_error err;
ix_buffer_free_list_info hwFreeListInfo;
int i;

if (Uof_file == NULL) {
printk("%s: no microcode file specified!\n",

NAT_DRIVER_NAME);
return -1;

}

/* Register the pseudo-device with Linux */
if (register_chrdev(NAT_major, NAT_DRIVER_NAME, &nat_fops) < 0) {

printk("%s: can’t get major number %d\n",
NAT_DRIVER_NAME, NAT_major);

return -1;
}

/* Initialize Intel’s Resource Manager */
printk("%s: Initializing Resource Manager\n", NAT_DRIVER_NAME);
err=ix_rm_init(0);
if (err != IX_SUCCESS) {

printk("Error: ix_rm_init failed\n");
return -1;

}

NSD-Intel -- Chapt. 25 77 2004

Core Initialization And Pseudo-Device Driver (8)

/* Register the exception packet handler */
printk("%s: Setting packet receive mode (to callback)\n",

NAT_DRIVER_NAME);
err = ix_rm_packet_set_receive_mode(NAT_CC_ID,

IX_COMM_ID_MODE_CALLBACK);
if (err != IX_SUCCESS)

panic("ix_rm_packet_set_receive_mode failed\n");
printk("%s: Registering packet handler\n", NAT_DRIVER_NAME);
err = ix_rm_packet_handler_register(NAT_CC_ID, nat_pkt_handler,

NULL);
if (err != IX_SUCCESS)

panic("ix_rm_packet_handler_register failed\n");

/* Allocate a free buffer list */
err = ix_rm_hw_buffer_free_list_create(NUM_BUFFERS,

sizeof(ix_hw_buffer_meta), BUF_SIZE,
BUF_SRAM_CHAN, BUF_DRAM_CHAN,&hwFreeList);

if (err != IX_SUCCESS)
panic("ix_rm_hw_buffer_free_list_create failed\n");

/* Read freelist info (it will be needes later) */
err = ix_rm_buffer_free_list_get_info(hwFreeList,

&hwFreeListInfo);
if (err != IX_SUCCESS)

panic("ix_rm_hw_buffer_free_list_get_info failed\n");

NSD-Intel -- Chapt. 25 78 2004

Core Initialization And Pseudo-Device Driver (9)

/* Allocate RX counters (SRAM, channel 0) */
err = ix_rm_mem_alloc(IX_MEMORY_TYPE_SRAM, 0,

RX_CNTR_SIZE, &rx_cntr);
if (err != IX_SUCCESS)

panic("ix_rm_mem_alloc failed for RX counters\n");
/* Clear RX counters */
bzero(rx_cntr,RX_CNTR_SIZE);

/* Allocate TX counters (SRAM, channel 1) */
err = ix_rm_mem_alloc(IX_MEMORY_TYPE_SRAM, 1,

TX_CNTR_SIZE, &tx_cntr);
if (err != IX_SUCCESS)

panic("ix_rm_mem_alloc failed for TX counters\n");
/* Clear TX counters */
bzero(tx_cntr,TX_CNTR_SIZE);

/* Allocate the NAT table in DRAM */
err = ix_rm_mem_alloc(IX_MEMORY_TYPE_DRAM, 0,

2*NAT_TABLE_SIZE*sizeof(nat_entry),
(void**)&f_nat_table);

if (err != IX_SUCCESS)
panic("ix_rm_mem_alloc failed for NAT table\n");

/* Clear the NAT table */
bzero((void*)f_nat_table,2*NAT_TABLE_SIZE*sizeof(nat_entry));
/* Set the base address for reverse NAT table */
r_nat_table=f_nat_table+NAT_TABLE_SIZE;

NSD-Intel -- Chapt. 25 79 2004

Core Initialization And Pseudo-Device Driver (10)

/* Allocate the NAT index table in DRAM */
err = ix_rm_mem_alloc(IX_MEMORY_TYPE_DRAM, 0,

2*NAT_TABLE_SIZE*sizeof(unsigned int),
(void**)&f_index);

if (err != IX_SUCCESS)
panic("ix_rm_mem_alloc failed for NAT index table\n");

/* Clear the NAT index table */
bzero((void*)f_index,2*NAT_TABLE_SIZE*sizeof(unsigned int));
/* Set the base for the reverse NAT index table */
r_index=f_index+NAT_TABLE_SIZE;

/* Allocate the timer table in SRAM */
err = ix_rm_mem_alloc(IX_MEMORY_TYPE_SRAM, 0, NAT_TABLE_SIZE,

(void**)&f_timer);
if (err != IX_SUCCESS)

panic("ix_rm_mem_alloc failed for timer table\n");
/* Clear the timer table */
bzero((void*)f_timer,2*NAT_TABLE_SIZE);
/* Set the base address for the reverse timer table */
r_timer=f_timer+NAT_TABLE_SIZE;

/* Allocate the ARP table in DRAM */
err = ix_rm_mem_alloc(IX_MEMORY_TYPE_SRAM, 1,

ARP_TABLE_SIZE*sizeof(arp_entry), (void**)&arp_table);
if (err != IX_SUCCESS)

panic("ix_rm_mem_alloc failed for ARP table\n");
/* Clear the ARP table */
bzero((void*)arp_table,ARP_TABLE_SIZE*sizeof(arp_entry));

NSD-Intel -- Chapt. 25 80 2004

Core Initialization And Pseudo-Device Driver (11)

/* Reset the microengines */
printk("%s: Resetting all microengines\n", NAT_DRIVER_NAME);
ix_rm_ueng_reset_all();

/* Get the microcode from the UOF file */
printk("%s: Setting ucode\n", NAT_DRIVER_NAME);
err = ix_rm_ueng_set_ucode(Uof_file);
if (err != IX_SUCCESS)

panic("ix_rm_ueng_set_ucode failed\n");

/* Patch the microcode symbols before actually */
/* loading microcode. */
if (patch_microblocks(hwFreeListInfo) < 0)

return(-1);

/* Create scratch rings */
if (create_scr_rings() < 0)

return(-1);

/* Load microcode into microengines */
printk("%s: Loading ucode\n", NAT_DRIVER_NAME);
err = ix_rm_ueng_load();
if (err != IX_SUCCESS)

panic("ix_rm_ueng_load failed\n");

/* Initialize hash unit */
if (init_hash() < 0)

return(-1);

NSD-Intel -- Chapt. 25 81 2004

Core Initialization And Pseudo-Device Driver (12)

/* Start the assigned microengines */
for (i=0;i<ME_NUM;i++) {

if ((ME_MASK>>i)&0x1) {
printk("%s: Starting ME%i\n",NAT_DRIVER_NAME, i);
err = ix_rm_ueng_start(ME_ID(i),CONTEXT_MASK);
if (err != IX_SUCCESS)

panic("ix_rm_ueng_start failed for ME %i\n",i);
}

}

/* Resolve an ARP entry for the gateway */
if (resolve_arp(GW_IP) != IX_SUCCESS)

panic("can’t resolve ARP entry for the gateway\n");

/* Create an execution engine (i.e., a kernel thread) for the */
/* NAT timer aging procedure */
err=ix_cci_init(); /* Initialize Intel’s CCI */
if (err != IX_SUCCESS)

panic("ix_cci_init failed\n");
printk("%s: Creating timer thread\n",NAT_DRIVER_NAME);
err=ix_cci_exe_run(NULL,exe_init_f,exe_fini_f,"NAT timer",

&exeHandle);
if (err != IX_SUCCESS) {

ix_cci_fini();
panic("ix_cci_exe_run failed\n");

}
return 0;

}

NSD-Intel -- Chapt. 25 82 2004

Core Initialization And Pseudo-Device Driver (13)

/* Cleanup */
void cleanup_module()
{

ix_error err;
int i;

/* Stop each of the assigned microengines */
for (i=0;i<ME_NUM;i++) {

if ((ME_MASK>>i)&0x1) {
printk("%s: Stopping ME%i\n",NAT_DRIVER_NAME,i);
err = ix_rm_ueng_stop(ME_ID(i));
if (err != IX_SUCCESS)

printk(
"%s: ix_rm_ueng_stop failed for ME %i\n",
NAT_DRIVER_NAME,i);

}
}

/* Unregister the packet handler */
ix_rm_packet_handler_unregister(NAT_CC_ID);

/* Terminate the timer thread */
printk("%s: Stopping timer thread\n",NAT_DRIVER_NAME);
ix_cci_exe_shutdown(exeHandle);
ix_cci_fini();

NSD-Intel -- Chapt. 25 83 2004

Core Initialization And Pseudo-Device Driver (14)

/* Terminate the Resource Manager */
ix_rm_term();

/* unregister pseudo-device */
unregister_chrdev(NAT_major, NAT_DRIVER_NAME);

}

/* NAT table management: periodically go through the timer table */
/* and update (age) each of the timers */
ix_error nat_table_timer(void* dummy)
{

int i;
for (i=0;i<2*NAT_TABLE_SIZE;i++)

if (f_nat_table[i].valid)
f_timer[i]=f_timer[i]>>1;

return(IX_SUCCESS);
}

ix_error exe_init_f(ix_exe_handle exeHandle,void** ppContext)
{

ix_cc_init_context dummy;
return ix_cci_cc_create(exeHandle,cc_init_f,cc_fini_f,

(void*)&dummy,&ccHandle);
}

ix_error exe_fini_f(ix_exe_handle exeHandle,void* pContext)
{

return ix_cci_cc_destroy(ccHandle);
}

NSD-Intel -- Chapt. 25 84 2004

Core Initialization And Pseudo-Device Driver (15)

ix_error cc_init_f(ix_cc_handle ccHandle,void** ppContext)
{

/* Age each timer every AGING_INTERVAL */
return ix_cci_cc_add_event_handler(ccHandle,AGING_INTERVAL,

nat_table_timer,IX_EVENT_TYPE_PERIODIC,1,&eveHandle);
}

ix_error cc_fini_f(ix_cc_handle ccHandle,void* pContext)
{

return ix_cci_cc_remove_event_handler(ccHandle,eveHandle);
}

NSD-Intel -- Chapt. 25 85 2004

Core Initialization And Pseudo-Device Driver (16)

/**/
/* Patch the microcode symbols before actually loading microcode. */
/* */
/* The imported variables that must be patched are: */
/* BUF_FREE_LIST0 -- get from freelist allocation, */
/* used by all microblocks */
/* BUF_SRAM_BASE -- get from freelist allocation, */
/* used by all microblocks */
/* DL_REL_BASE -- compute from freelist allocation */
/* parameters, used by all microblocks */
/* FREE_LIST_ID -- get from freelist allocation (RX ublock) */
/* PACKET_COUNTERS_SRAM_BASE -- get from memory allocation for */
/* RX counters, used by RX ublock */
/* PACKET_TX_COUNTER_BASE -- get from memory allocation for */
/* TX counters, used by TX ublock */
/* ARP_TABLE_BASE -- get from memory allocation, */
/* used by NAT microblock only */
/* NAT_TABLE_BASE -- get from memory allocation, */
/* used by NAT microblock only */
/* TIMER_TABLE_BASE -- get from memory allocation, */
/* used by NAT microblock only */
/* GATEWAY_IP_ADDR -- gateway IP address, hardcoded, */
/* used by NAT microblock only */
/* IF0_IP, IF1_IP, */
/* IF0_ETH_W0, IF0_ETH_W1, */
/* IF1_ETH_W0, IF1_ETH_W1 -- interface settings from interface */
/* table, used by NAT microblock only */
/**/

NSD-Intel -- Chapt. 25 86 2004

Core Initialization And Pseudo-Device Driver (17)

int patch_microblocks(ix_buffer_free_list_info hwFreeListInfo)
{

ix_error err;
ix_imported_symbol importSymbols[15];
ix_uint32 memChan;
ix_uint32 offset;

/* Set common symbols */
importSymbols[0].m_Name="BUF_FREE_LIST0";
importSymbols[0].m_Value = hwFreeListInfo.m_FreeListInfo;

importSymbols[1].m_Name="BUF_SRAM_BASE";
err = ix_rm_get_phys_offset(hwFreeListInfo.m_pMetaBaseAddress,

NULL,&memChan,&offset,NULL);
if (err != IX_SUCCESS)

panic("ix_rm_get_phys_offset failed for %s\n",
importSymbols[1].m_Name);

importSymbols[1].m_Value = ME_SRAM_ADDR(offset,memChan);

importSymbols[2].m_Name = "DL_REL_BASE";
err = ix_rm_get_phys_offset(hwFreeListInfo.m_pDataBaseAddress,

NULL,&memChan,&offset,NULL);
if (err != IX_SUCCESS)

panic("ix_rm_get_phys_offset failed for %s\n",
importSymbols[2].m_Name);

importSymbols[2].m_Value = offset -
((importSymbols[1].m_Value*hwFreeListInfo.m_DataElementSize)/

hwFreeListInfo.m_MetaElementSize);

NSD-Intel -- Chapt. 25 87 2004

Core Initialization And Pseudo-Device Driver (18)

/* Set RX specific symbols */
importSymbols[3].m_Name="PACKET_COUNTERS_SRAM_BASE";
err = ix_rm_get_phys_offset(rx_cntr,NULL,&memChan,&offset,NULL);
if (err != IX_SUCCESS)

panic("ix_rm_get_phys_offset failed for %s\n",
importSymbols[3].m_Name);

importSymbols[3].m_Value = ME_SRAM_ADDR(offset,memChan);

importSymbols[4].m_Name="FREE_LIST_ID";
importSymbols[4].m_Value = hwFreeListInfo.m_FreeListInfo1;

/* Patch ME 0x00 -- RX microblock */
err = ix_rm_ueng_patch_symbols(0x00,5,importSymbols);
if (err != IX_SUCCESS)

panic("ix_rm_ueng_patch_symbols failed for RX microblock\n");

/* Set NAT specific symbols */
importSymbols[3].m_Name="NAT_TABLE_BASE";
err = ix_rm_get_phys_offset((void*)f_nat_table,

NULL,&memChan,&offset,NULL);
if (err != IX_SUCCESS)

panic("ix_rm_get_phys_offset failed for %s\n",
importSymbols[3].m_Name);

importSymbols[3].m_Value = offset;
importSymbols[4].m_Name="ARP_TABLE_BASE";
err = ix_rm_get_phys_offset((void*)arp_table,

NULL,&memChan,&offset,NULL);

NSD-Intel -- Chapt. 25 88 2004

Core Initialization And Pseudo-Device Driver (19)

if (err != IX_SUCCESS)
panic("ix_rm_get_phys_offset failed for %s\n",

importSymbols[3].m_Name);
importSymbols[4].m_Value = ME_SRAM_ADDR(offset,memChan);
importSymbols[5].m_Name="GATEWAY_IP_ADDR";
importSymbols[5].m_Value=gateway_ip;
importSymbols[6].m_Name="IF0_IP";
importSymbols[6].m_Value=iface_table[0].ip_addr;
importSymbols[7].m_Name="IF0_ETH_W0";
importSymbols[7].m_Value=iface_table[0].eth_w0;
importSymbols[8].m_Name="IF0_ETH_W1";
importSymbols[8].m_Value=iface_table[0].eth_w1;
importSymbols[9].m_Name="IF1_IP";
importSymbols[9].m_Value=iface_table[1].ip_addr;
importSymbols[10].m_Name="IF1_ETH_W0";
importSymbols[10].m_Value=iface_table[1].eth_w0;
importSymbols[11].m_Name="IF1_ETH_W1";
importSymbols[11].m_Value=iface_table[1].eth_w1;
importSymbols[12].m_Name="TIMER_TABLE_BASE";
err = ix_rm_get_phys_offset((void*)f_timer,

NULL,&memChan,&offset,NULL);
if (err != IX_SUCCESS)

panic("ix_rm_get_phys_offset failed for %s\n",
importSymbols[3].m_Name);

importSymbols[12].m_Value = ME_SRAM_ADDR(offset,memChan);

NSD-Intel -- Chapt. 25 89 2004

Core Initialization And Pseudo-Device Driver (20)

/* Patch ME 0x01 -- NAT microblock */
err = ix_rm_ueng_patch_symbols(0x01,13,importSymbols);
if (err != IX_SUCCESS)

panic("ix_rm_ueng_patch_symbols failed for NAT microblock\n");

/* Set counter base for TX */
importSymbols[3].m_Name="PACKET_TX_COUNTER_BASE";
err = ix_rm_get_phys_offset((void*)tx_cntr,

NULL,&memChan,&offset,NULL);
if (err != IX_SUCCESS)

panic("ix_rm_get_phys_offset failed for %s\n",
importSymbols[3].m_Name);

importSymbols[3].m_Value = ME_SRAM_ADDR(offset,memChan);

/* Patch ME 0x02 -- TX microblock */
err = ix_rm_ueng_patch_symbols(0x02,4,importSymbols);
if (err != IX_SUCCESS)

panic("ix_rm_ueng_patch_symbols failed for TX microblock\n");
return(1);

}

NSD-Intel -- Chapt. 25 90 2004

Core Initialization And Pseudo-Device Driver (21)

/* Function to create RX and TX scratch memory rings */
int create_scr_rings()
{

ix_error err;
err = ix_rm_hw_scratch_ring_create(0,

(PKT_RX_TO_NAT_SCR_RING_SIZE>>9),
PKT_RX_TO_NAT_SCR_RING, &rxToNatRing);

if (err != IX_SUCCESS)
panic("ix_rm_hw_scratch_ring_create failed for Rx->Nat ring\n");

err = ix_rm_hw_scratch_ring_create(0,
(PACKET_TX_SCR_RING_0_SIZE>>9),
PACKET_TX_SCR_RING_0, &txScrRing[0]);

if (err != IX_SUCCESS)
panic("ix_rm_hw_scratch_ring_create failed for TX 0 ring\n");

err = ix_rm_hw_scratch_ring_create(0,
(PACKET_TX_SCR_RING_1_SIZE>>9),
PACKET_TX_SCR_RING_1, &txScrRing[1]);

if (err != IX_SUCCESS)
panic("ix_rm_hw_scratch_ring_create failed for TX 1 ring\n");

err = ix_rm_hw_scratch_ring_create(0,
(PACKET_TX_SCR_RING_2_SIZE>>9),
PACKET_TX_SCR_RING_2, &txScrRing[2]);

if (err != IX_SUCCESS)
panic("ix_rm_hw_scratch_ring_create failed for TX 2 ring\n");

err = ix_rm_hw_scratch_ring_create(0,
(PACKET_TX_SCR_RING_3_SIZE>>9),
PACKET_TX_SCR_RING_3, &txScrRing[3]);

NSD-Intel -- Chapt. 25 91 2004

Core Initialization And Pseudo-Device Driver (22)

if (err != IX_SUCCESS)
panic("ix_rm_hw_scratch_ring_create failed for TX 3 ring\n");

return(1);
}

NSD-Intel -- Chapt. 25 92 2004

Core Initialization And Pseudo-Device Driver (23)

/* Function to initialize the 128-bit and 48-bit hash multipliers */
int init_hash()
{

ix_error err;
ix_hash_multiplier_128 hash128m;
ix_hash_multiplier_48 hash48m;
hash128m.m_LW0=HASH_MULT_W0;
hash128m.m_LW1=HASH_MULT_W1;
hash128m.m_LW2=HASH_MULT_W2;
hash128m.m_LW3=HASH_MULT_W3;
printk("%s: Setting hash 128 multiplier to 0x%08X%08X%08X%08X\n",

NAT_DRIVER_NAME,
(unsigned int)hash128m.m_LW3, (unsigned int)hash128m.m_LW2,
(unsigned int)hash128m.m_LW1, (unsigned int)hash128m.m_LW0);

err=ix_rm_hash_128_multiplier_set(&hash128m);
if (err != IX_SUCCESS)

panic("ix_rm_hash_128_multiplier_set failed\n");
if (err != IX_SUCCESS)

panic("ix_rm_hash_64_multiplier_set failed\n");
hash48m.m_LW0=HASH_MULT_W0;
hash48m.m_LW1=HASH_MULT_W1;
printk("%s: Setting hash 48 multiplier to 0x%08X%08X\n",

NAT_DRIVER_NAME,
(unsigned int)hash48m.m_LW1, (unsigned int)hash48m.m_LW0);

err=ix_rm_hash_48_multiplier_set(&hash48m);
if (err != IX_SUCCESS)

panic("ix_rm_hash_48_multiplier_set failed\n");
return(1);

}

NSD-Intel -- Chapt. 25 93 2004

Packet Formats Used By The Core (1)

/* NAT_net.h - protocol declarations used by the core component */

/* Ethernet packet header */
typedef struct eth_s {

unsigned char e_dst[6];
unsigned char e_src[6];
unsigned short e_type;
unsigned short data[1];

} eth;

/* ARP packet header */
typedef struct arp_s {

unsigned short ar_hrd;
unsigned short ar_pro;
unsigned char ar_hln;
unsigned char ar_pln;
unsigned short ar_op;
unsigned char ar_sha[6];
/* declared as two shorts for alignment */
unsigned short ar_spa1;
unsigned short ar_spa2;
unsigned char ar_tha[6];
unsigned int ar_tpa;

} arp;

NSD-Intel -- Chapt. 25 94 2004

Packet Formats Used By The Core (2)

/* IP packet header */
typedef struct ip_s {

unsigned char ip_v : 4;
unsigned char ip_hl : 4;
unsigned char ip_tos;
unsigned short ip_len;
unsigned short ip_id;
unsigned short ip_frag;
unsigned char ip_ttl;
unsigned char ip_p;
unsigned short ip_sum;
unsigned int ip_src;
unsigned int ip_dst;
unsigned int data[1];

} ip;

/* ICMP packet header */
typedef struct icmp_s {

unsigned char icmp_type;
unsigned char icmp_code;
unsigned short icmp_cksum;
unsigned short icmp_id;
unsigned short icmp_seq;
unsigned int data[1];

} icmp;

NSD-Intel -- Chapt. 25 95 2004

Packet Formats Used By The Core (3)

/* TCP packet header */
typedef struct tcp_s {

unsigned short tcp_sport;
unsigned short tcp_dport;
unsigned int tcp_seq;
unsigned int tcp_ack;
unsigned char tcp_offset;
unsigned char tcp_code;
unsigned short tcp_window;
unsigned short tcp_cksum;
unsigned short tcp_urgptr;
unsigned int data[1];

} tcp;

/* UDP packet header */
typedef struct udp_s {

unsigned short udp_sport;
unsigned short udp_dport;
unsigned short udp_len;
unsigned short udp_cksum;

} udp;

/* Transmit request structure */
typedef struct tx_req_s {

unsigned int valid : 1;
unsigned int reserved : 3;
unsigned int port : 4;
unsigned int buff_handle : 24;

} ix_tx_req;

NSD-Intel -- Chapt. 25 96 2004

Core Component Packet Handler (1)

/* NAT_pkt_handler.c - packet handler and table management functions */

#include <enpv2_types.h>
#include <ix_rm.h> /* Code uses the IXA Resource Manager */
#undef LINUX /* Prevents the compiler from complaining */
#include <ix_cc.h> /* Code uses the IXA CCI */
#include <ix_cci.h>
#include "NAT_shared_defs.h"
#include "NAT_types.h"
#include "NAT_net.h"

/* macro to drop a packet and quit packet handler */
#define drop(arg_hBuffer) { ix_rm_buffer_free(arg_hBuffer);\

return IX_SUCCESS; }

/* Verbosity level */
extern int verb;

/* Static gateway IP address */
extern unsigned int gateway_ip;

/* Static network interface configuration */
extern net_if iface_table[];

/* Global NAT port */
static unsigned short global_nport=0;

/* Scratch rings */
extern ix_hw_ring_handle rxToNatRing, txScrRing[];

NSD-Intel -- Chapt. 25 97 2004

Core Component Packet Handler (2)

/* List of free buffers */
extern ix_buffer_free_list_handle hwFreeList;

/* Pointers to various run-time data structures */
extern nat_entry *f_nat_table, *r_nat_table;
extern unsigned int *f_index,*r_index;
extern arp_entry *arp_table;
extern unsigned char *f_timer, *r_timer;

/* global procedures */
ix_error nat_pkt_handler(ix_buffer_handle,ix_uint32,void*);
ix_error resolve_arp(unsigned int);

/* local procedures */
static void process_arp_req(arp*,ix_hw_buffer_meta*,

ix_buffer_handle,eth*);
static void process_arp_rep(arp*,ix_hw_buffer_meta*);
static void send_icmp_echo_rep(ip*,icmp*,ix_hw_buffer_meta*,

ix_buffer_handle,eth*);
static int process_icmp(icmp*,nat_entry*);
static int process_udp(udp*,nat_entry*);
static int process_tcp(tcp*,nat_entry*);
static char* find_arp_entry(unsigned int);
static int add_arp_entry(arp_entry*);
static int add_nat_entry(nat_entry*);
static void add_r_nat_entry(unsigned int);
static void del_nat_entry(unsigned int);

NSD-Intel -- Chapt. 25 98 2004

Core Component Packet Handler (3)

static int set_new_nport(nat_entry*);
static void send_pkt(void*, unsigned int, eth*,

unsigned char *, unsigned short);

/* Packet handler called when an exception packet arrives */
ix_error nat_pkt_handler(

ix_buffer_handle arg_hBuffer,
ix_uint32 arg_UserData, /* exception code */
void* arg_pContext
)

{
ix_hw_buffer_meta *meta_data;
void *buf;
int cksum;
eth *eth_pkt;
arp *arp_pkt;
arp_entry ae;
ip* ip_pkt;
icmp* icmp_pkt;
tcp* tcp_pkt;
udp* udp_pkt;
nat_entry ne;
char * gw_eth;
ix_rm_buffer_get_data(arg_hBuffer, &buf);
ix_rm_buffer_get_meta(arg_hBuffer, (void **)&meta_data);
eth_pkt=(eth*)((int)buf+(int)(meta_data->m_Offset));

NSD-Intel -- Chapt. 25 99 2004

Core Component Packet Handler (4)

if (eth_pkt->e_type == ETH_ARP) { /* got ARP */
if (verb == VERBOSE)

printk("Got ARP packet\n");
arp_pkt=(arp*)(eth_pkt->data);
if (arp_pkt->ar_op == ARP_REQ &&

arp_pkt->ar_tpa ==
iface_table[meta_data->m_InputPort].ip_addr) {
/* Process ARP request */
process_arp_req(arp_pkt,meta_data,

arg_hBuffer,eth_pkt);
return IX_SUCCESS;

} else
if (arp_pkt->ar_op == ARP_REP &&

arp_pkt->ar_tpa ==
iface_table[meta_data->m_InputPort].ip_addr) {
/* Process an ARP reply */
process_arp_rep(arp_pkt,meta_data);
return IX_SUCCESS;

} else drop(arg_hBuffer);
}
if (eth_pkt->e_type != ETH_IP)

drop(arg_hBuffer);
/* got IP packet */
ip_pkt=(ip*)(eth_pkt->data);

NSD-Intel -- Chapt. 25 100 2004

Core Component Packet Handler (5)

if (verb == VERBOSE) {
printk("Got IP packet\n");
printk("\tIP src = %i.%i.%i.%i\n",IP2B(ip_pkt->ip_src));
printk("\tIP dst = %i.%i.%i.%i\n",IP2B(ip_pkt->ip_dst));
printk("\tprotocol: %i\n",ip_pkt->ip_p);
printk("\tingress port = %i\n", meta_data->m_InputPort);

}
/* For simplicity, the code drops a datagram that */
/* has IP options */
if (ip_pkt->ip_hl > 5)

drop(arg_hBuffer);
if (ip_pkt->ip_dst ==

iface_table[meta_data->m_InputPort].ip_addr) {
/* The packet is destined to the NAT box itself */

if (ip_pkt->ip_p == IPT_ICMP) { /* got ICMP */
icmp_pkt=(icmp*)(ip_pkt->data);
if (icmp_pkt->icmp_type == ICMP_ECHO_REQ) {

/* received ping */
if (verb == VERBOSE)

printk("Got ping for us\n");
/* Send an echo reply */
send_icmp_echo_rep(ip_pkt,icmp_pkt,

meta_data,
arg_hBuffer,eth_pkt);

return IX_SUCCESS;
}

}
}

NSD-Intel -- Chapt. 25 101 2004

Core Component Packet Handler (6)

if (/* Packet not from the gateway */
meta_data->m_InputPort != NAT_IFC &&
/* An entry is present in ARP table for the gateway */
(gw_eth = find_arp_entry(GW_IP)) != NULL) {

/* The packet is an exception because the NAT lookup */
/* failed, so add a new entry to the NAT table */
ne.valid=0; /* will be set to 1 later */
ne.prot=ip_pkt->ip_p;
ne.ip_addr_loc=ip_pkt->ip_src;
ne.ip_addr_rem=ip_pkt->ip_dst;
switch (ip_pkt->ip_p) {

case IPT_ICMP:
/* packet is ICMP */
icmp_pkt=(icmp*)(ip_pkt->data);
if (process_icmp(icmp_pkt,&ne) < 0)

drop(arg_hBuffer);
break;

case IPT_TCP:
/* received TCP */
tcp_pkt=(tcp*)(ip_pkt->data);
if (process_tcp(tcp_pkt,&ne) < 0)

drop(arg_hBuffer);
break;

case IPT_UDP:
/* received UDP */
udp_pkt=(udp*)(ip_pkt->data);
if (process_udp(udp_pkt,&ne) < 0)

drop(arg_hBuffer);
break;

NSD-Intel -- Chapt. 25 102 2004

Core Component Packet Handler (7)

default: drop(arg_hBuffer);
}
/* Create an ARP entry for this packet in case a reply */
/* comes later */
ae.ip_addr=ip_pkt->ip_src;
ae.eth_w0=*(int*)eth_pkt->e_src;
ae.eth_w1=(*(short*)ð_pkt->e_src[4]);
ae.ifnum = meta_data->m_InputPort;
ae.valid = 1;
/* Update the IP checksum */
cksum = ip_pkt->ip_sum+(ip_pkt->ip_src>>16)

+ (ip_pkt->ip_src&0xFFFF)
+ ((~iface_table[NAT_IFC].ip_addr)>>16)
+ ((~iface_table[NAT_IFC].ip_addr)&0xFFFF);

cksum=(cksum&0xFFFF)+(cksum>>16);
cksum=(cksum&0xFFFF)+(cksum>>16);
/* Update the IP packet */
ip_pkt->ip_src = iface_table[NAT_IFC].ip_addr;
ip_pkt->ip_sum=cksum&0xFFFF;
/* Transmit the packet */
send_pkt((void*)arg_hBuffer,NAT_IFC,eth_pkt,

gw_eth,ETH_IP);
/* Add the ARP entry that was created above */
add_arp_entry(&ae);
return IX_SUCCESS;

}
/* Drop the packet */
drop(arg_hBuffer);

}

NSD-Intel -- Chapt. 25 103 2004

Core Component Packet Handler (8)

/* Function to pass packet to TX microblock */
static void send_pkt(void* buf, unsigned int ifnum, eth* eth_pkt,

unsigned char * eth_addr, unsigned short eth_type)
{

ix_tx_req txreq;
ix_uint32 txreq_size;
/* set ethernet addresses */
(int)eth_pkt->e_dst=*(int*)eth_addr;
(short)((int*)eth_pkt->e_dst+1)=*(short*)((int*)eth_addr+1);
(int)eth_pkt->e_src=iface_table[ifnum].eth_w0;
(short)((int*)eth_pkt->e_src+1)=(iface_table[ifnum].eth_w1>>16);
eth_pkt->e_type = eth_type;
/* prepare Tx request */
txreq.valid = 1; /* valid request */
txreq.reserved=0; /* reserved -- set to zero */
txreq.port = ifnum; /* outgoing interface */
txreq.buff_handle = (unsigned int)buf; /* buffer handle */
txreq_size=1;
/* put Tx request on appropriate Tx scratch ring */
ix_rm_hw_ring_put(txScrRing[txreq.port], &txreq_size,

(ix_uint32 *)&txreq);
}

NSD-Intel -- Chapt. 25 104 2004

Core Component Packet Handler (9)

/* ARP lookup function */
char * find_arp_entry(unsigned int ipaddr)
{

ix_hash_48 hash48v;
int i,j;
hash48v.m_LW0 = ipaddr;
hash48v.m_LW1 = 0;
ix_rm_hash_48_hash(&hash48v);
j = hash48v.m_LW0&ARP_TABLE_BIT_MASK;
for (i=0;i<ARP_TABLE_SIZE;i++) {

if (ipaddr == arp_table[j].ip_addr && arp_table[j].valid)
return((char*)&(arp_table[j].eth_w0));

j=(j+1)&ARP_TABLE_BIT_MASK;
}
return NULL;

}

/* Function to resolve an ARP entry for given IP address (used */
/* to obtain an ARP entry for the gateway) */
ix_error resolve_arp(unsigned int ipaddr)
{

char eth_bcast[]={0xff,0xff,0xff,0xff,0xff,0xff};
void * buf;
eth *eth_pkt;
arp *arp_pkt;
ix_buffer_handle hBuffer;
ix_hw_buffer_meta *meta_data;
int i;

NSD-Intel -- Chapt. 25 105 2004

Core Component Packet Handler (10)

for (i=0;i<GW_MAC_RES_ATTEMPTS;i++) {
ix_rm_buffer_alloc(hwFreeList,&hBuffer);
ix_rm_buffer_get_data(hBuffer,(void**)&buf);
ix_rm_buffer_get_meta(hBuffer, (void **)&meta_data);
meta_data->m_Offset=0;
meta_data->m_BufferSize=60;
meta_data->m_PacketSize=60;
eth_pkt=(eth*)((int)buf+(int)meta_data->m_Offset);
arp_pkt=(arp*)(eth_pkt->data);
arp_pkt->ar_hrd = 1; /* Ethernet */
arp_pkt->ar_hln = 6;
arp_pkt->ar_pro = ETH_IP; /* IPv4 */
arp_pkt->ar_pln = 4;
arp_pkt->ar_op = ARP_REQ;
(int)arp_pkt->ar_tha=0;
(short)((int*)arp_pkt->ar_tha+1)=0;
arp_pkt->ar_tpa=GW_IP;
(int)arp_pkt->ar_sha=iface_table[NAT_IFC].eth_w0;
(short)((int*)arp_pkt->ar_sha+1)=

(iface_table[NAT_IFC].eth_w1>>16);
arp_pkt->ar_spa1=

(short)(iface_table[NAT_IFC].ip_addr>>16);
arp_pkt->ar_spa2=

(short)(iface_table[NAT_IFC].ip_addr&0xFFFF);
send_pkt((void*)hBuffer, NAT_IFC, eth_pkt,

eth_bcast, ETH_ARP);
printk("%s: Resolving gateway MAC address...\n",

NAT_DRIVER_NAME);

NSD-Intel -- Chapt. 25 106 2004

Core Component Packet Handler (11)

ix_ossl_sleep(500);
if (find_arp_entry(GW_IP) != NULL)

return IX_SUCCESS;
}
return(-1);

}

/* Function to process an ARP request */
void process_arp_req(arp* arp_pkt,ix_hw_buffer_meta* meta_data,

ix_buffer_handle arg_hBuffer,eth *eth_pkt)
{

arp_entry ae;
ae.ip_addr = (arp_pkt->ar_spa1<<16)|arp_pkt->ar_spa2;
ae.eth_w0 = *(int*)arp_pkt->ar_sha;
ae.eth_w1 = (*(short*)((int*)arp_pkt->ar_sha+1));
ae.ifnum = meta_data->m_InputPort;
ae.valid = 1;
arp_pkt->ar_op = ARP_REP;
(int)arp_pkt->ar_tha=*(int*)arp_pkt->ar_sha;
(short)(arp_pkt->ar_tha+4)=*(short*)(arp_pkt->ar_sha+4);
arp_pkt->ar_tpa=(arp_pkt->ar_spa1<<16)|arp_pkt->ar_spa2;
(int)arp_pkt->ar_sha=iface_table[meta_data->m_InputPort].eth_w0;
(short)(arp_pkt->ar_sha+4)=

iface_table[meta_data->m_InputPort].eth_w1>>16;
arp_pkt->ar_spa1=iface_table[meta_data->m_InputPort].ip_addr>>16;
arp_pkt->ar_spa2=

iface_table[meta_data->m_InputPort].ip_addr&0xFFFF;

NSD-Intel -- Chapt. 25 107 2004

Core Component Packet Handler (12)

send_pkt((void*)arg_hBuffer, meta_data->m_InputPort,
eth_pkt, eth_pkt->e_src, ETH_ARP);

if (verb == VERBOSE)
printk("Sent ARP reply\n");

/* Also add an entry into arp table */
if (!add_arp_entry(&ae))

printk("%s: ARP table full!", NAT_DRIVER_NAME);
}

/* Function to process an ARP reply */
void process_arp_rep(arp* arp_pkt,ix_hw_buffer_meta* meta_data)
{

arp_entry ae;
ae.ip_addr = (arp_pkt->ar_spa1<<16) | arp_pkt->ar_spa2;
ae.eth_w0 = *(int*)arp_pkt->ar_sha;
ae.eth_w1 = *(short*)(arp_pkt->ar_sha+4);
ae.ifnum = meta_data->m_InputPort;
ae.valid = 1;
if (!add_arp_entry(&ae))

printk("%s: ARP table full!", NAT_DRIVER_NAME);
}

NSD-Intel -- Chapt. 25 108 2004

Core Component Packet Handler (13)

/* Function to insert an entry into the ARP table. */
/* Note: because our code uses a simplified ARP table in which entries */
/* do not expire, there is no need to check for duplicate entries. */
int add_arp_entry(arp_entry *ae)
{

ix_hash_48 hash48v;
int i,j;
hash48v.m_LW0 = ae->ip_addr;
hash48v.m_LW1 = 0;
ix_rm_hash_48_hash(&hash48v);
j = hash48v.m_LW0&ARP_TABLE_BIT_MASK;
for (i=0;i<ARP_TABLE_SIZE;i++) {

if (ae->ip_addr == arp_table[j].ip_addr &&
arp_table[j].valid)

return(1);
if (!arp_table[j].valid) {

arp_table[j]=*ae;
return(1);

}
j=(j+1)&ARP_TABLE_BIT_MASK;

}
return(0);

}

NSD-Intel -- Chapt. 25 109 2004

Core Component Packet Handler (14)

/* Function to insert an entry into the NAT table */
int add_nat_entry(nat_entry* ne)
{

ix_hash_128 hash128v;
unsigned char timer, del_timer;
int i,j,del_cand;
hash128v.m_LW0 = ne->ip_addr_rem;
hash128v.m_LW1 = ne->ip_addr_loc;
hash128v.m_LW2 = (ne->lport<<16)|ne->rport;
hash128v.m_LW3 = ne->prot;
ix_rm_hash_128_hash(&hash128v);
j = (hash128v.m_LW0&NAT_TABLE_BIT_MASK)<<HASH_BUCKET_SHIFT;
del_cand=j;
for (i=0;i<HASH_BUCKET_SIZE;i++,j++) {

if (f_nat_table[j].valid &&
ne->ip_addr_loc == f_nat_table[j].ip_addr_loc &&
ne->ip_addr_rem == f_nat_table[j].ip_addr_rem &&
ne->lport == f_nat_table[j].lport &&
ne->rport == f_nat_table[j].rport &&
ne->prot == f_nat_table[j].prot) {

ne->nport=f_nat_table[j].nport;
return(1);

}

NSD-Intel -- Chapt. 25 110 2004

Core Component Packet Handler (15)

if (!f_nat_table[j].valid) {
if (set_new_nport(ne) < 0)

return(-1);
f_nat_table[j]=*ne;
add_r_nat_entry(j);
f_nat_table[j].valid=1;
return(1);

}
/* No free slot was found; choose a candidate */
/* for deletion */
timer=f_timer[j]|r_timer[f_index[j]];
del_timer = f_timer[del_cand]|r_timer[f_index[del_cand]];
if (timer < del_timer ||

(timer == del_timer &&
f_nat_table[j].prot!=f_nat_table[del_cand].prot &&
(f_nat_table[j].prot == IPT_ICMP ||
(f_nat_table[j].prot == IPT_UDP &&
f_nat_table[del_cand].prot == IPT_TCP))))

del_cand=j;
}
del_nat_entry(del_cand);
if (set_new_nport(ne) < 0)

return(-1);
f_nat_table[del_cand]=*ne;
add_r_nat_entry(del_cand);
f_nat_table[del_cand].valid=1;
return(1);

}

NSD-Intel -- Chapt. 25 111 2004

Core Component Packet Handler (16)

/* Function to delete an entry from the NAT table */
void del_nat_entry(unsigned int entry_index)
{

f_nat_table[entry_index].valid=0;
f_timer[entry_index]=0;
r_nat_table[f_index[entry_index]].valid=0;
r_timer[f_index[entry_index]]=0;

}

/* Function to add an entry to the reverse NAT table */
void add_r_nat_entry(unsigned int entry_index)
{

ix_hash_128 hash128v;
int i, j, k, del_cand, r_del_cand;
unsigned char timer, del_timer;
nat_entry *ne=&f_nat_table[entry_index];
hash128v.m_LW0 = ne->ip_addr_rem;
hash128v.m_LW1 = (ne->nport<<16)|ne->rport;
hash128v.m_LW2 = ne->prot;
hash128v.m_LW3 = 0;
ix_rm_hash_128_hash(&hash128v);
j=(hash128v.m_LW0&NAT_TABLE_BIT_MASK)<<HASH_BUCKET_SHIFT;
del_cand=r_index[j];
r_del_cand=j;

NSD-Intel -- Chapt. 25 112 2004

Core Component Packet Handler (17)

for (i=0;i<HASH_BUCKET_SIZE;i++,j++) {
/* Check whether the slot is empty */
if (!r_nat_table[j].valid) {

/* we found an empty slot in reverse NAT table */
r_nat_table[j]=f_nat_table[entry_index];
f_index[entry_index]=j;
r_index[j]=entry_index;
r_nat_table[j].valid=1;
return;

}
/* Find a canditate for deletion */
k = r_index[j];
timer = f_timer[k]|r_timer[j];
del_timer=f_timer[del_cand]|r_timer[r_del_cand];
if (timer < del_timer ||

(timer == del_timer &&
f_nat_table[k].prot!=f_nat_table[del_cand].prot &&
(f_nat_table[k].prot == IPT_ICMP ||

(f_nat_table[k].prot == IPT_UDP &&
f_nat_table[del_cand].prot == IPT_TCP)))) {

del_cand=k;
r_del_cand=j;

}
}

NSD-Intel -- Chapt. 25 113 2004

Core Component Packet Handler (18)

/* This point is reached if no slot is empty */
del_nat_entry(del_cand);
r_nat_table[r_del_cand]=f_nat_table[entry_index];
r_index[r_del_cand] = entry_index;
f_index[entry_index] = r_del_cand;
r_nat_table[r_del_cand].valid=1;

}

/* Function to calculate a value for a new NAT port */
int set_new_nport(nat_entry* ne)
{

ix_hash_128 hash128v;
int i,j,k;

ne->nport=++global_nport;
/* Try at most NEW_NPORT_ATTEMPS values, and then give up */
for (i=0;i<NEW_NPORT_ATTEMPS;i++) {

hash128v.m_LW0 = ne->ip_addr_rem;
hash128v.m_LW1 = (ne->nport<<16)|ne->rport;
hash128v.m_LW2 = ne->prot;
hash128v.m_LW3 = 0;
ix_rm_hash_128_hash(&hash128v);
j=(hash128v.m_LW0&NAT_TABLE_BIT_MASK)<<HASH_BUCKET_SHIFT;

NSD-Intel -- Chapt. 25 114 2004

Core Component Packet Handler (19)

for (k=0;k<HASH_BUCKET_SIZE;k++,j++) {
if (r_nat_table[j].valid &&

r_nat_table[j].ip_addr_rem == ne->ip_addr_rem &&
r_nat_table[j].rport == ne->rport &&
r_nat_table[j].nport == ne->nport &&
r_nat_table[j].prot == ne->prot)

break;
}
if (k==HASH_BUCKET_SIZE)

/* An unused NAT port value has been found */
return(ne->nport);

/* try the next NAT port value */
ne->nport=++global_nport;

}
return(-1);

}

NSD-Intel -- Chapt. 25 115 2004

Core Component Packet Handler (20)

/* Function to send echo response */
void send_icmp_echo_rep(ip* ip_pkt,icmp* icmp_pkt,

ix_hw_buffer_meta* meta_data,ix_buffer_handle arg_hBuffer,
eth *eth_pkt)

{
unsigned int cksum;
icmp_pkt->icmp_type = ICMP_ECHO_REP;
cksum = icmp_pkt->icmp_cksum+(ICMP_ECHO_REQ<<8)

+ ((~(ICMP_ECHO_REP<<8))&0xFFFF);
cksum = (cksum&0xFFFF)+(cksum>>16);
cksum = (cksum&0xFFFF)+(cksum>>16);
icmp_pkt->icmp_cksum = cksum&0xFFFF;
ip_pkt->ip_dst = ip_pkt->ip_src;
ip_pkt->ip_src = iface_table[meta_data->m_InputPort].ip_addr;
send_pkt((void*)arg_hBuffer,meta_data->m_InputPort, eth_pkt,

eth_pkt->e_src, ETH_IP);
}

NSD-Intel -- Chapt. 25 116 2004

Core Component Packet Handler (21)

/* Function to translate ICMP packet */
int process_icmp(icmp* icmp_pkt,nat_entry* ne)
{

unsigned int cksum;
/* If this is not an echo request -- drop the packet */
if (icmp_pkt->icmp_type != ICMP_ECHO_REQ)

return(-1);
/* For ICMP echo request we do ID field translation */
ne->lport=icmp_pkt->icmp_id;
ne->rport=0;
if (add_nat_entry(ne) < 0)

return(-1);
icmp_pkt->icmp_id=ne->nport;
/* update ICMP checksum */
cksum= icmp_pkt->icmp_cksum+ne->lport

+ ((~icmp_pkt->icmp_id)&0xFFFF);
cksum=(cksum&0xFFFF)+(cksum>>16);
cksum=(cksum&0xFFFF)+(cksum>>16);
icmp_pkt->icmp_cksum = cksum&0xFFFF;
return(1);

}

NSD-Intel -- Chapt. 25 117 2004

Core Component Packet Handler (22)

/* Function to translate TCP packet */
int process_tcp(tcp* tcp_pkt,nat_entry* ne)
{

unsigned int cksum;
if (verb == VERBOSE) {

printk("\tTCP source port = %i\n", tcp_pkt->tcp_sport);
printk("\tTCP dest. port = %i\n", tcp_pkt->tcp_dport);

}
/* Perform TCP source port translation */
ne->lport=tcp_pkt->tcp_sport;
ne->rport=tcp_pkt->tcp_dport;
if (add_nat_entry(ne) < 0)

return(-1);
tcp_pkt->tcp_sport=ne->nport;
/* Update the TCP checksum */
cksum = tcp_pkt->tcp_cksum+ne->lport+(ne->ip_addr_loc>>16)

+ (ne->ip_addr_loc&0xFFFF)+((~tcp_pkt->tcp_sport)&0xFFFF)
+ ((~iface_table[NAT_IFC].ip_addr)>>16)
+ ((~iface_table[NAT_IFC].ip_addr)&0xFFFF);

cksum=(cksum&0xFFFF)+(cksum>>16);
cksum=(cksum&0xFFFF)+(cksum>>16);
tcp_pkt->tcp_cksum = cksum&0xFFFF;
return(1);

}

NSD-Intel -- Chapt. 25 118 2004

Core Component Packet Handler (23)

/* Function to translate UDP packet */
int process_udp(udp* udp_pkt,nat_entry* ne)
{

unsigned int cksum;
if (verb == VERBOSE) {

printk("\tUDP source port = %i\n", udp_pkt->udp_sport);
printk("\tUDP dest. port = %i\n", udp_pkt->udp_dport);

}
/* Perform UDP source port translation */
ne->lport=udp_pkt->udp_sport;
ne->rport=udp_pkt->udp_dport;
if (add_nat_entry(ne) < 0)

return(-1);
udp_pkt->udp_sport=ne->nport;
/* Update the UDP checksum */
if (udp_pkt->udp_cksum) {

cksum = udp_pkt->udp_cksum+ne->lport+(ne->ip_addr_loc>>16)
+ (ne->ip_addr_loc&0xFFFF)
+ ((~udp_pkt->udp_sport)&0xFFFF)
+ ((~iface_table[NAT_IFC].ip_addr)>>16)
+ ((~iface_table[NAT_IFC].ip_addr)&0xFFFF);

cksum=(cksum&0xFFFF)+(cksum>>16);
cksum=(cksum&0xFFFF)+(cksum>>16);
udp_pkt->udp_cksum = cksum&0xFFFF;

}
return(1);

}

NSD-Intel -- Chapt. 25 119 2004

User Interface Application

d Allows user to interact with core component

d Core component

– Defines pseudo-device in Linux kernel

– Installs driver for pseudo-device

d To execute a command, user interface performs an opeation
on the pseudo-device

NSD-Intel -- Chapt. 25 120 2004

Code For User Interface (1)

/* NAT_control.c -- user interface and control functions for NAT */

#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <enpv2_types.h>
#include <sys/mman.h>

#include "NAT_shared_defs.h"
#include "NAT_types.h"

#define USAGE \
"Usage: %s [show | clear | silent | arp | nat | verbose]\n", argv[0]

void AppShow(void)
{

int i;
UINT32 *p1, *p2;
char buf[1024];
int natfd;
natfd = open(NAT_DEV_FILE, O_RDWR, 0);
if (natfd == -1) {

printf("Failed to open %s\n",NAT_DEV_FILE);
return;

}

NSD-Intel -- Chapt. 25 121 2004

Code For User Interface (2)

void AppSilent()
{

int natfd;
natfd = open(NAT_DEV_FILE, O_RDWR, 0);
if (natfd == -1) {

printf("Failed to open %s\n",NAT_DEV_FILE);
return;

}
ioctl(natfd,SILENT,NULL);
close(natfd);

}

void AppVerbose()
{

int natfd;
natfd = open(NAT_DEV_FILE, O_RDWR, 0);
if (natfd == -1) {

printf("Failed to open %s\n",NAT_DEV_FILE);
return;

}
ioctl(natfd,VERBOSE,NULL);
close(natfd);

}

NSD-Intel -- Chapt. 25 122 2004

Code For User Interface (3)

void AppSilent()
{

int natfd;
natfd = open(NAT_DEV_FILE, O_RDWR, 0);
if (natfd == -1) {

printf("Failed to open %s\n",NAT_DEV_FILE);
return;

}
ioctl(natfd,SILENT,NULL);
close(natfd);

}

void AppVerbose()
{

int natfd;
natfd = open(NAT_DEV_FILE, O_RDWR, 0);
if (natfd == -1) {

printf("Failed to open %s\n",NAT_DEV_FILE);
return;

}
ioctl(natfd,VERBOSE,NULL);
close(natfd);

}

NSD-Intel -- Chapt. 25 123 2004

Code For User Interface (4)

void AppClear(void)
{

int natfd;
natfd = open(NAT_DEV_FILE, O_RDWR, 0);
if (natfd == -1) {

printf("Failed to open %s\n",NAT_DEV_FILE);
return;

}
ioctl(natfd,CLR_RX_COUNTER,NULL);
ioctl(natfd,CLR_TX_COUNTER,NULL);
close(natfd);
printf("Counters cleared\n");
return;

}

NSD-Intel -- Chapt. 25 124 2004

Code For User Interface (5)

void AppGetArpTbl(void)
{

int natfd,i;
arp_entry buf[ARP_TABLE_SIZE];
natfd = open(NAT_DEV_FILE, O_RDWR, 0);
if (natfd == -1) {

printf("Failed to open %s\n",NAT_DEV_FILE);
return;

}
ioctl(natfd,GET_ARP_TABLE,buf);
close(natfd);
for (i=0;i<ARP_TABLE_SIZE;i++) {
if (buf[i].valid)
printf(
"%i.%i.%i.%i -> %02X:%02X:%02X:%02X:%02X:%02X iface: %i\n",
IP2B(buf[i].ip_addr), ETH2B(buf[i].eth_w0),
buf[i].ifnum);

}
return;

}

NSD-Intel -- Chapt. 25 125 2004

Code For User Interface (6)

void AppGetNatTbl(void)
{

int natfd,i;
nat_entry buf[NAT_TABLE_SIZE];
unsigned char timer[2*NAT_TABLE_SIZE];
natfd = open(NAT_DEV_FILE, O_RDWR, 0);
if (natfd == -1) {

printf("Failed to open %s\n",NAT_DEV_FILE);
return;

}
ioctl(natfd,GET_NAT_TABLE,buf);
ioctl(natfd,GET_TIMER_TABLE,timer);
for (i=0;i<NAT_TABLE_SIZE;i++) {
if (buf[i].valid) {
printf("IP local: %i.%i.%i.%i port local: %i\n",

IP2B(buf[i].ip_addr_loc), buf[i].lport);
printf("IP remote: %i.%i.%i.%i port remote: %i\n",

IP2B(buf[i].ip_addr_rem), buf[i].rport);
printf("protocol: %i port (NAT): %i timer: %i index: %i\n\n",

buf[i].prot, buf[i].nport,
timer[i]|timer[NAT_TABLE_SIZE+i],i);

}
}
close(natfd);
return;

}

NSD-Intel -- Chapt. 25 126 2004

Code For User Interface (7)

int main(int argc, char **argv)
{

if (argc != 2) {
printf(USAGE);
return 0;

}
if (strncmp(argv[1], "show", 4) == 0) {

AppShow();
} else if (strncmp(argv[1], "clear", 5) == 0) {

AppClear();
} else if (strncmp(argv[1], "silent", 6) == 0) {

AppSilent();
} else if (strncmp(argv[1], "verbose", 7) == 0) {

AppVerbose();
} else if (strncmp(argv[1], "arp", 3) == 0) {

AppGetArpTbl();
} else if (strncmp(argv[1], "nat", 3) == 0) {

AppGetNatTbl();
} else {

printf("Invalid parameter\n");
printf(USAGE);

}
return 0;

}

NSD-Intel -- Chapt. 25 127 2004

Summary

d Example system implements NAT

d Code uses RX and TX microblocks from Intel’s SDK

d NAT microblock implements NAT in fast path

d Core component handles exceptions

d User interface provides interaction with core component

NSD-Intel -- Chapt. 25 128 2004

Questions?

X

Switching Fabrics

NSD-Intel -- Chapt. 10 1 2004

Physical Interconnection

d Physical box with backplane

d Individual blades plug into backplane slots

d Each blade contains one or more network connections

NSD-Intel -- Chapt. 10 2 2004

Logical Interconnection

d Known as switching fabric

d Handles transport from one blade to another

d Becomes bottleneck as number of interfaces scales

NSD-Intel -- Chapt. 10 3 2004

Illustration Of Switching Fabric

switching
fabric

1

2

N

...

1

2

M

...

CPU

input ports output ports

input
arrives

output
leaves

d Any input port can send to any output port

NSD-Intel -- Chapt. 10 4 2004

Switching Fabric Properties

d Used inside a single network system

d Interconnection among I/O ports (and possibly CPU)

d Can transfer unicast, multicast, and broadcast packets

d Scales to arbitrary data rate on any port

d Scales to arbitrary packet rate on any port

d Scales to arbitrary number of ports

d Has low overhead

d Has low cost

NSD-Intel -- Chapt. 10 5 2004

Types Of Switching Fabrics

d Space-division (separate paths)

d Time-division (shared medium)

NSD-Intel -- Chapt. 10 6 2004

Space-Division Fabric (separate paths)

switching fabric

1

2

N

...

1

2

M

...

input ports output ports

input
arrives

output
leaves

interface hardware

d Can use multiple paths simultaneously

NSD-Intel -- Chapt. 10 7 2004

Space-Division Fabric (separate paths)

switching fabric

1

2

N

...

1

2

M

...

input ports output ports

input
arrives

output
leaves

interface hardware

d Can use multiple paths simultaneously

d Still have port contention

NSD-Intel -- Chapt. 10 7 2004

Desires

NSD-Intel -- Chapt. 10 8 2004

Desires

d High speed

NSD-Intel -- Chapt. 10 8 2004

Desires

d High speed

d Low cost

NSD-Intel -- Chapt. 10 8 2004

Desires

d High speed and low cost!

NSD-Intel -- Chapt. 10 8 2004

Possible Compromise

d Separation of physical paths

d Less parallel hardware

d Crossbar design

NSD-Intel -- Chapt. 10 9 2004

Space-Division (Crossbar Fabric)

switching fabric

controller

1

2

N

...

1 2 M...

input ports

output ports

inactive
connection

active
connection

interface hardware

NSD-Intel -- Chapt. 10 10 2004

Crossbar

d Allows simultaneous transfer on disjoint pairs of ports

d Can still have port contention

NSD-Intel -- Chapt. 10 11 2004

Crossbar

d Allows simultaneous transfer on disjoint pairs of ports

d Can still have port contention

NSD-Intel -- Chapt. 10 11 2004

Solving Contention

d Queues (FIFOs)

– Attached to input

– Attached to output

– At intermediate points

NSD-Intel -- Chapt. 10 12 2004

Crossbar Fabric With Queuing

switching fabric

controller

1

2

N

...

1 2 M...

input ports

output ports

input queues

output queues

NSD-Intel -- Chapt. 10 13 2004

Time-Division Fabric (shared bus)

shared bus

1 2 N.. . 1 2 M.. .

input ports output ports

d Chief advantage: low cost

d Chief disadvantage: low speed

NSD-Intel -- Chapt. 10 14 2004

Time-Division Fabric (shared memory)

shared memory
switching fabric

controller

1

2

N

...

1

2

M

...

input ports output ports

memory
interface

d May be better than shared bus

d Usually more expensive

NSD-Intel -- Chapt. 10 15 2004

Multi-Stage Fabrics

d Compromise between pure time-division and pure space-
division

d Attempt to combine advantages of each

– Lower cost from time-division

– Higher performance from space-division

d Technique: limited sharing

NSD-Intel -- Chapt. 10 16 2004

Banyan Fabric

d Example of multi-stage fabric

d Features

– Scalable

– Self-routing

– Packet queues allowed, but not required

NSD-Intel -- Chapt. 10 17 2004

Basic Banyan Building Block

2-input
switch

"0"

"1"

input #1

input #2

d Address added to front of each packet

d One bit of address used to select output

NSD-Intel -- Chapt. 10 18 2004

4-Input And 8-Input Banyan Switches

4-input switch

(a)

SW1 SW3

SW2 SW4

"00"

"01"

"10"

"11"

8-input switch

(b)

4-input switch
(for details
see above)

4-input switch
(for details
see above)

SW1

SW2

SW3

SW4

"000"

"001"

"010"

"011"

"100"

"101"

"110"

"111"

inputs outputs

inputs outputs

NSD-Intel -- Chapt. 10 19 2004

Summary

d Switching fabric provides connections inside single network
system

d Two basic approaches

– Time-division has lowest cost

– Space-division has highest performance

d Multistage designs compromise between two

d Banyan fabric is example of multistage

NSD-Intel -- Chapt. 10 20 2004

Questions?

XIV

Issues In Scaling A Network Processor

NSD-Intel -- Chapt. 14 1 2004

Design Questions

d Can we make network processors

– Faster?

– Easier to use?

– More powerful?

– More general?

– Cheaper?

– All of the above?

d Scale is fundamental

NSD-Intel -- Chapt. 14 2 2004

Scaling The Processor Hierarchy

d Make processors faster

d Use more concurrent threads

d Increase processor types

d Increase numbers of processors

NSD-Intel -- Chapt. 14 3 2004

The Pyramid Of Processor Scale

CPU

Embedded Proc.

I / O Processors

Lower Levels Of Processor Hierarchy

d Lower levels need the most increase

NSD-Intel -- Chapt. 14 4 2004

Scaling The Memory Hierarchy

d Size

d Speed

d Throughput

d Cost

NSD-Intel -- Chapt. 14 5 2004

Memory Speed

d Access latency

– Raw read/write access speed

– SRAM 2 - 10 ns

– DRAM 50 - 70 ns

– External memory takes order of magnitude longer than
onboard

NSD-Intel -- Chapt. 14 6 2004

Memory Speed
(continued)

d Memory cycle time

– Measure of successive read/write operations

– Important for networking because packets are large

– Read Cycle time (tRC) is time for successive fetch
operations

– Write Cycle time (tWC) is time for successive store
operations

NSD-Intel -- Chapt. 14 7 2004

The Pyramid Of Memory Scale

Reg.

Onboard mem.

External SRAM

External DRAM

d Largest memory is least expensive

NSD-Intel -- Chapt. 14 8 2004

Memory Bandwidth

d General measure of throughput

d More parallelism in access path yields more throughput

d Cannot scale arbitrarily

– Pinout limits

– Processor must have addresses as wide as bus

NSD-Intel -- Chapt. 14 9 2004

Types Of Memory

Memory Technology Abbreviation Purpose
22

Synchronized DRAM SDRAM Synchronized with CPU
for lower latency

Quad Data Rate SRAM QDR-SRAM Optimized for low latency
and multiple access

Zero Bus Turnaround SRAM ZBT-SRAM Optimized for random
access

Fast Cycle RAM FCRAM Low cycle time optimized
for block transfer

Double Data Rate DRAM DDR-DRAM Optimized for low
latency

Reduced Latency DRAM RLDRAM Low cycle time and
low power requirements

NSD-Intel -- Chapt. 14 10 2004

Memory Cache

d General-purpose technique

d May not work well in network systems

NSD-Intel -- Chapt. 14 11 2004

Memory Cache

d General-purpose technique

d May not work well in network systems

– Low temporal locality

NSD-Intel -- Chapt. 14 11 2004

Memory Cache

d General-purpose technique

d May not work well in network systems

– Low temporal locality

– Large cache size (either more entries or larger
granularity of access)

NSD-Intel -- Chapt. 14 11 2004

Content Addressable Memory (CAM)

d Combination of mechanisms

– Random access storage

– Exact-match pattern search

d Rapid search enabled with parallel hardware

NSD-Intel -- Chapt. 14 12 2004

Arrangement Of CAM

CAM

...

one slot

d Organized as array of slots

NSD-Intel -- Chapt. 14 13 2004

Lookup In Conventional CAM

d Given

– Pattern for which to search

– Known as key

d CAM returns

– First slot that matches key, or

– All slots that match key

NSD-Intel -- Chapt. 14 14 2004

Ternary CAM (T-CAM)

d Allows masking of entries

d Good for network processor

NSD-Intel -- Chapt. 14 15 2004

T-CAM Lookup

d Each slot has bit mask

d Hardware uses mask to decide which bits to test

d Algorithm

for each slot do {

if ((key & mask) == (slot & mask)) {

declare key matches slot;

} else {

declare key does not match slot;
}

}

NSD-Intel -- Chapt. 14 16 2004

Partial Matching With A T-CAM

08 00 45 06 00 50 00 02

ff ff ff ff ff ff 00 00

08 00 45 06 00 35 00 03

ff ff ff ff ff ff 00 00

08 00 45 06 00 50 00 00

slot #1

slot #2

key

mask

mask

d Key matches slot #1

NSD-Intel -- Chapt. 14 17 2004

Using A T-CAM For Classification

d Extract values from fields in headers

d Form values in contiguous string

d Use a key for T-CAM lookup

d Store classification in slot

NSD-Intel -- Chapt. 14 18 2004

Classification Using A T-CAM

CAM RAM

...

storage for key pointer

NSD-Intel -- Chapt. 14 19 2004

Software Scalability

d Not always easy

d Many resource constraints

d Difficulty arises from

– Explicit parallelism

– Code optimized by hand

– Pipelines on heterogeneous hardware

NSD-Intel -- Chapt. 14 20 2004

Summary

d Scalability key issue

d Primary subsystems affecting scale

– Processor hierarchy

– Memory hierarchy

d Many memory types available

– SRAM

– SDRAM

– CAM

d T-CAM useful for classification

NSD-Intel -- Chapt. 14 21 2004

Questions?

XV

Examples Of Commercial Network Processors

NSD-Intel -- Chapt. 15 1 2004

Commercial Products

d Emerge in late 1990s

d Become popular in early 2000s

d Exceed thirty vendors by 2003

d Fewer than thirty vendors by 2004

NSD-Intel -- Chapt. 15 2 2004

Examples

d Chosen to

– Illustrate concepts

– Show broad categories

– Expose the variety

d Not necessarily ‘‘best’’

d Not meant as an endorsement of specific vendors

d Show a snapshot as of 2004

NSD-Intel -- Chapt. 15 3 2004

Short Pipeline Of Unconventional
Processors (Agere)

d Two-stage pipeline

– Classification

– Forwarding (traffic management)

d Unusual, special-purpose processors

– Classification uses programmable pattern matching
engine

– Traffic manager uses programmable queue selection
mechanism

d Model is APP550

NSD-Intel -- Chapt. 15 4 2004

Agere Architecture

APP550

Classification:
pattern processor

Forwarding:
traffic manager

and
packet modifier

State Engine:
statistics and

host communication

in out

NSD-Intel -- Chapt. 15 5 2004

Languages Used By Agere

d FPL

– Functional Programming Language

– Produces code for FPP

– Non-procedural

d C-NP

– C for Network Processors

– Produces code for engines on chip

– Similar to shell scripts

NSD-Intel -- Chapt. 15 6 2004

Architecture Of Agere’s APP550 chip

APP550

Input
Inter-
face

Output
Inter-
face

State
Engine

Pattern
Processing

Engine

PDU
Assembler

Stream
Editor

Reorder Buffer
and

Traffic Shaper

PCI bus

PCI bus
interface

onboard
memory

Ingress

GMII,
SMII,
PMA

SPI-3,
Utopia

coprocessor
input

(SPI-3)

Egress

GMII,
SMII,
PMA

SPI-3,
Utopia

coprocessor
output
(SPI-3)

classif.
memory
(FCRAM)

statistics memory
(DDR-SRAM)

scheduler memory
(DDR-SRAM)

classif. buffer
(FCRAM)

schedul. buffer
(FCRAM)

SED memory
(FCRAM)

NSD-Intel -- Chapt. 15 7 2004

Processors On Agere’s APP550

Engine Purpose22

Pattern Processing Engine Classification
State Engine Gathering state information for scheduling

and verifying flow is within bounds
Reorder Buffer Manager Ensure packet order
PDU Assembler Collect all blocks of a frame
Traffic Manager Schedule packets and shape traffic flow
Stream EDitor (SED) Modify outgoing packet

NSD-Intel -- Chapt. 15 8 2004

Augmented RISC (Alchemy)

d Based on MIPS-32 CPU

– Five-stage pipeline

d Augmented for packet processing

– Instructions (e.g. multiply-and-accumulate)

– Memory cache

– I/O interfaces

NSD-Intel -- Chapt. 15 9 2004

Alchemy Architecture

input
interface

output
interface

packet
assembler

stream
editor

Transmit Queue Logic

queue
manager

logic

traffic
manager
engine

traffic
shaper
engine

ext. sched.
SSRAM

ext. sched.
interface

ext. queue
entry SSRAM

ext. linked
list SSRAM

config.
inter-
face

packets in SDRAM SSRAM

input output

NSD-Intel -- Chapt. 15 10 2004

Parallel Embedded Processors
Plus Coprocessors (AMCC)

d One to six nP core processors

d Various engines

– Packet metering

– Packet transform

– Packet policy

NSD-Intel -- Chapt. 15 11 2004

AMCC Architecture

control iface debug port inter mod. test iface

input outputpacket transform engine

external search
interface

external memory
interface

host
interface

memory access unit

onboard
memory

six
nP cores

policy
engine

metering
engine

NSD-Intel -- Chapt. 15 12 2004

Parallel Pipelines Of
Homogeneous Processors

(Cisco)

d Parallel eXpress Forwarding (PXF)

d Arranged in parallel pipelines

d Packet flows through one pipeline

d Each processor in pipeline dedicated to one task

NSD-Intel -- Chapt. 15 13 2004

Cisco Architecture

input

output

MAC classify

Accounting & ICMP

FIB & Netflow

MPLS classify

Access Control

CAR

MLPPP

WRED

NSD-Intel -- Chapt. 15 14 2004

Pipeline Of Parallel Heterogeneous
Processors (EZchip)

d Four processor types

d Each type optimized for specific task

NSD-Intel -- Chapt. 15 15 2004

EZchip NP-1c Architecture

TOPparse TOPsearch TOPresolve TOPmodify

memory memory memory memory

...........

...........

...........

...........

NSD-Intel -- Chapt. 15 16 2004

EZchip Processor Types

Processor Type Optimized For22

TOPparse Header field extraction and classification
TOPsearch Table lookup
TOPresolve Queue management and forwarding
TOPmodify Packet header and content modification

NSD-Intel -- Chapt. 15 17 2004

Extensive And Diverse Processors
(Hifn, formerly IBM)

d Multiple processor types

d Extensive use of parallelism

d Separate ingress and egress processing paths

d Multiple onboard data stores

d Model is NP4GS3

NSD-Intel -- Chapt. 15 18 2004

Hifn NP4GS3 Architecture

ingress
data
store

SRAM
for

ingress
data

egress
data
store

traffic
manag.

and
sched.

ingress
switch

interface

egress
switch

interface
internal
SRAM

Embedded Processor Complex
(EPC)

ingress
physical

MAC
multiplexor

egress
physical

MAC
multiplexor

to switching
fabric

PCI
bus

external DRAM
and SRAM

from switching
fabric

egress
data store

packets from
physical devices

packets to
physical devices

NSD-Intel -- Chapt. 15 19 2004

Hifn’s Embedded Processor Complex

control memory arbiter

H0 H1 H2 H3 H4 S D0 D1 D2 D3 D4 D5 D6

frame dispatch

instr. memory classifier assist bus arbiter

ingress
data
iface egress

data
iface

embed.
PowerPC

inter. bus controlhardware regs.

completion unit

debug & inter.

programmable
protocol processors

(16 picoengines)

. ..

ingress
data
store

egress
data
store

to onboard memory to external memory

internal
bus

PCI
bus

egress
queue

ingress
data
store egress

data
store

ingress
queue

interrupts

exceptions

NSD-Intel -- Chapt. 15 20 2004

Packet Engines

d Found in Embedded Processor Complex

d Programmable

d Handle many packet processing tasks

d Operate in parallel (sixteen)

d Known as picoengines

NSD-Intel -- Chapt. 15 21 2004

Other Processors On The IBM Chip

Coprocessor Purpose222

Data Store Provides frame buffer DMA
Checksum Calculates or verifies header checksums
Enqueue Passes outgoing frames to switch or target queues
Interface Provides access to internal registers and memory
String Copy Transfers internal bulk data at high speed
Counter Updates counters used in protocol processing
Policy Manages traffic
Semaphore Coordinates and synchronizes threads

NSD-Intel -- Chapt. 15 22 2004

Flexible RISC Plus Coprocessors
(Motorola C-PORT)

d Onboard processors can be

– Dedicated

– Parallel clusters

– Pipeline

NSD-Intel -- Chapt. 15 23 2004

C-Port Architecture

multiple onboard buses

queue
mgmt.

unit
fabric
proc.

table
lookup

unit

buffer
mgmt.

unit
Exec. Processor

pci ser. prom

. . .CP-0 CP-1 CP-2 CP-3 CP-12 CP-13 CP-14 CP-15

clusters

SRAM fabric
switching

SRAM PCI bus serial PROM DRAM

connections multiplexed
to physical interfaces

NSD-Intel -- Chapt. 15 24 2004

Internal Structure Of A
C-Port Channel Processor

memory bus

RISC Processor

extract
space

merge
space

Serial Data
Processor

(in)

Serial Data
Processor

(out)

To external DRAM

packets arrive packets leave

d Actually a processor complex

NSD-Intel -- Chapt. 15 25 2004

Extremely Long Pipeline (Xelerated)

d Pipeline contains 200 processors

d Each processor can execute four instructions per packet

d External coprocessor calls used to pass state

NSD-Intel -- Chapt. 15 26 2004

Xelerated Architecture

. . .

packet
arrives

packet
leaves

200 processors

d Pipeline has 200 stages

NSD-Intel -- Chapt. 15 27 2004

Xelerated Internal Architecture

linear array of processors
(long pipeline)

to CPU

channel multiplexor

hash
engine

metering
engine

counter
engine

TCAM
engine

lookaside
engine 0

lookaside
engine 1

lookaside
engine 2

lookaside
engine 3

inputs outputs

external SRAM, DRAM, TCAM or coprocessors

NSD-Intel -- Chapt. 15 28 2004

Summary

d Many network processor architecture variations

d Examples include

– Augmented RISC processor

– Embedded parallel processors plus coprocessors

– Parallel pipelines of homogeneous processors

– Pipeline of parallel heterogeneous processors

– Extensive and diverse processors

– Flexible RISC plus coprocessors

– Extremely long pipeline

NSD-Intel -- Chapt. 15 29 2004

Questions?

XVII

Design Tradeoffs And Consequences

NSD-Intel -- Chapt. 16 1 2004

Low Development Cost
Vs.

Performance

d The fundamental economic motivation

d ASIC costs $1M to develop

d Network processor costs programmer time

NSD-Intel -- Chapt. 16 2 2004

Programmability
Vs.

Processing Speed

d Programmable hardware is slower

d Flexibility costs...

NSD-Intel -- Chapt. 16 3 2004

Speed
Vs.

Functionality

d Generic idea:

– Processor with most functionality is slowest

– Adding functionality to NP lowers its overall ‘‘speed’’

NSD-Intel -- Chapt. 16 4 2004

Speed

d Difficult to define

d Can include

– Packet Rate

– Data Rate

– Burst size

NSD-Intel -- Chapt. 16 5 2004

Per-Interface Rates
Vs.

Aggregate Rates

d Per-interface rate important if

– Physical connections form bottleneck

– System scales by having faster interfaces

d Aggregate rate important if

– Fabric forms bottleneck

– System scales by having more interfaces

NSD-Intel -- Chapt. 16 6 2004

Increasing Processing Speed
Vs.

Increasing Bandwidth

Will network processor capabilities or the bandwidth of
network connections increase more rapidly?

d What is the effect of more transistors?

d Does Moore’s Law apply to bandwidth?

NSD-Intel -- Chapt. 16 7 2004

Lookaside Coprocessors
Vs.

Flow-Through Coprocessors

d Flow-through pipeline

– Operates at wire speed

– Difficult to change

d Lookaside

– Modular and easy to change

– Invocation can be bottleneck

NSD-Intel -- Chapt. 16 8 2004

Uniform Pipeline
Vs.

Synchronized Pipeline

d Uniform pipeline

– Operates in lock-step like assembly line

– Each stage must finish in exactly the same time

d Synchronized pipeline

– Buffers allow computation at each stage to differ

– Synchronization expensive

NSD-Intel -- Chapt. 16 9 2004

Explicit Parallelism
Vs.

Cost And Programmability

d Explicit parallelism

– Hardware is less complex

– More difficult to program

d Implicit parallelism

– Easier to program

– Slightly lower performance

NSD-Intel -- Chapt. 16 10 2004

Parallelism
Vs.

Strict Packet Ordering

d Increased parallelism

– Improves performance

– Results in out-of-order packets

d Strict packet ordering

– Aids protocols such as TCP

– Can nullify use of parallelism

NSD-Intel -- Chapt. 16 11 2004

Stateful Classification
Vs.

High-Speed Parallel Classification

d Static classification

– Keeps no state

– Is the fastest

d Dynamic classification

– Keeps state

– Requires synchronization for updates

NSD-Intel -- Chapt. 16 12 2004

Memory Speed
Vs.

Programmability

d Separate memory banks

– Allow parallel accesses

– Yield high performance

– Difficult to program

d Non-banked memory

– Easier to program

– Lower performance

NSD-Intel -- Chapt. 16 13 2004

I/O Performance
Vs.

Pin Count

d Bus width

– Increase to produce higher throughput

– Decrease to take fewer pins

NSD-Intel -- Chapt. 16 14 2004

Programming Languages

d A three-way tradeoff

d Can have two, but not three of

– Ease of programming

– Functionality

– Performance

NSD-Intel -- Chapt. 16 15 2004

Programming Languages That
Offer High Functionality

d Ease of programming vs. speed

– High-level language offers ease of programming, but
lower performance

– Low-level language offers higher performance, but
makes programming more difficult

NSD-Intel -- Chapt. 16 16 2004

Programming Languages That
Offer Ease Of Programming

d Speed vs. functionality

– For restricted language, compiler can generate optimized
code

– Broad functionality and ease of programming lead to
inefficient code

NSD-Intel -- Chapt. 16 17 2004

Programming Languages That
Offer High Performance

d Ease of programming vs. functionality

– Optimizing compiler and ease of programming imply a
restricted application

– Optimizing code for general applications requires more
programmer effort

NSD-Intel -- Chapt. 16 18 2004

Multithreading:
Throughput

Vs.
Ease Of Programming

d Multiple threads of control can increase throughput

d Planning the operation of threads that exhibit less contention
requires more programmer effort

NSD-Intel -- Chapt. 16 19 2004

Traffic Management
Vs.

High-Speed Forwarding

d Traffic management

– Can manage traffic on multiple, independent flows

– Requires extra processing

d Blind forwarding

– Performed at highest speed

– Does not distinguish among flows

NSD-Intel -- Chapt. 16 20 2004

Generality
Vs.

Specific Architectural Role

d General-purpose network processor

– Used in any part of any system

– Used with any protocol

– More expensive

d Special-purpose network processor

– Restricted to one role / protocol

– Less expensive, but may need many types

NSD-Intel -- Chapt. 16 21 2004

Special-Purpose Memory
Vs.

General-Purpose Memory

d General-purpose memory

– Single type of memory serves all needs

– May not be optimal for any use

d Special-purpose memory

– Optimized for one use

– May require multiple memory types

NSD-Intel -- Chapt. 16 22 2004

Backward Compatibility
Vs.

Architectural Advances

d Backward compatibility

– Keeps same instruction set through multiple versions

– May not provide maximal performance

d Architectural advances

– Allows more optimizations

– Difficult for programmers

NSD-Intel -- Chapt. 16 23 2004

Parallelism
Vs.

Pipelining

d Both are fundamental performance techniques

d Usually used in combination: pipeline of parallel processors

– How long is pipeline?

– How much parallelism at each stage?

NSD-Intel -- Chapt. 16 24 2004

Summary

d Many design tradeoffs

d No easy answers

NSD-Intel -- Chapt. 16 25 2004

Questions?

STOP

