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I

Course Introduction
And Overview
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Topic And Scope

The concepts, principles, and technologies that underlie the
design of hardware and software systems used in computer
networks and the Internet, focusing on the emerging field of
network processors.
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You Will Learn

� Review of

– Network systems

– Protocols and protocol processing tasks
� Hardware architectures for protocol processing
� Software-based network systems and software architectures
� Classification

– Concept

– Software implementation

– Special languages
� Switching fabrics
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You Will Learn
(continued)

� Network processors: definition, architectures, and use
� Design tradeoffs and consequences
� Survey of commercial network processors
� Details of one example network processor

– Architecture and instruction set(s)

– Programming model and program optimization

– Cross-development environment
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What You Will NOT Learn

� EE details

– VLSI technology and design rules

– Chip interfaces: ICs and pin-outs

– Waveforms, timing, or voltage

– How to wire wrap or solder
� Economic details

– Comprehensive list of vendors and commercial products

– Price points
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Background Required

� Basic knowledge of

– Network and Internet protocols

– Packet headers
� Basic understanding of hardware architecture

– Registers

– Memory organization

– Typical instruction set
� Willingness to use an assembly language
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Schedule Of Topics

� Quick review of basic networking
� Protocol processing tasks and classification
� Software-based systems using conventional hardware
� Special-purpose hardware for high speed
� Motivation and role of network processors
� Network processor architectures
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Schedule Of Topics
(continued)

� An example network processor technology in detail

– Hardware architecture and parallelism

– Programming model

– Testbed architecture and features
� Design tradeoffs
� Scaling a network processor
� Classification languages and programs
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Course Administration

� Textbook

– D. Comer, Network Systems Design Using Network
Processors, Prentice Hall, 2003.

� Grade

– Quizzes 5%

– Midterm and final exam 35%

– Programming projects 60%
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Lab Facilities Available

� Extensive network processor testbed facilities (more than
any other university)

� Donations from

– Agere Systems

– IBM

– Intel
� Includes hardware and cross-development software
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What You Will Do In The Lab

� Write and compile software for an NP
� Download software into an NP
� Monitor the NP as it runs
� Interconnect Ethernet ports on an NP board

– To other ports on other NP boards

– To other computers in the lab
� Send Ethernet traffic to the NP
� Receive Ethernet traffic from the NP
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Programming Projects

� A packet analyzer

– IP datagrams

– TCP segments
� An Ethernet bridge
� An IP fragmenter
� A classification program
� A bump-in-the-wire system using low-level packet

processors
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Questions?



A QUICK OVERVIEW

OF NETWORK PROCESSORS
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The Network Systems Problem

� Data rates keep increasing
� Protocols and applications keep evolving
� System design is expensive
� System implementation and testing take too long
� Systems often contain errors
� Special-purpose hardware designed for one system cannot

be reused
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The Challenge

Find ways to improve the design and manufacture of
complex networking systems.
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The Big Questions

� What systems?

– Everything we have now

– New devices not yet designed
� What physical communication mechanisms?

– Everything we have now

– New communication systems not yet
designed / standardized

� What speeds?

– Everything we have now

– New speeds much faster than those in use
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More Big Questions

� What protocols?

– Everything we have now

– New protocols not yet designed / standardized
� What applications?

– Everything we have now

– New applications not yet designed / standardized
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The Challenge
(restated)

Find flexible, general technologies that enable rapid,
low-cost design and manufacture of a variety of scalable,
robust, efficient network systems that run a variety of
existing and new protocols, perform a variety of existing and
new functions for a variety of existing and new, higher-speed
networks to support a variety of existing and new
applications.
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Special Difficulties

� Ambitious goal
� Vague problem statement
� Problem is evolving with the solution
� Pressure from

– Changing infrastructure

– Changing applications
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Desiderata

� High speed
� Flexible and extensible to accommodate

– Arbitrary protocols

– Arbitrary applications

– Arbitrary physical layer
� Low cost
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Desiderata

� High speed
� Flexible and extensible to accommodate

– Arbitrary protocols

– Arbitrary applications

– Arbitrary physical layer
� Low cost
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Statement Of Hope
(1995 version)

If there is hope, it lies in ASIC designers.
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Statement Of Hope
(1999 version)

If there is hope, it lies in ASIC designers.

???
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Statement Of Hope
(2003 version)

If there is hope, it lies in ASIC designers.

programmers!
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Programmability

� Key to low-cost hardware for next generation network
systems

� More flexibility than ASIC designs
� Easier / faster to update than ASIC designs
� Less expensive to develop than ASIC designs
� What we need: a programmable device with more capability

than a conventional CPU
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The Idea In A Nutshell

� Devise new hardware building blocks
� Make them programmable
� Include support for protocol processing and I/O

– General-purpose processor(s) for control tasks

– Special-purpose processor(s) for packet processing and
table lookup

� Include functional units for tasks such as checksum
computation

� Integrate as much as possible onto one chip
� Call the result a network processor
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The Rest Of The Course

� We will

– Examine general problem being solved

– Survey some approaches vendors have taken

– Explore possible architectures

– Study example technologies

– Consider how to implement systems using network
processors
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Disclaimer #1

In the field of network processors, I am a tyro.
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Definition

Tyro \Ty’ro\, n.; pl. Tyros. A beginner in learning; one who is in
the rudiments of any branch of study; a person imperfectly
acquainted with a subject; a novice.
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By Definition

In the field of network processors, you are all tyros.
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In Our Defense

When it comes to network processors, everyone is a tyro.
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Questions?



II

Basic Terminology And Example Systems
(A Quick Review)
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Packets Cells And Frames

� Packet

– Generic term

– Small unit of data being transferred

– Travels independently

– Upper and lower bounds on size
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Packets Cells And Frames
(continued)

� Cell

– Fixed-size packet (e.g., ATM)
� Frame or layer-2 packet

– Packet understood by hardware
� IP datagram

– Internet packet
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Types Of Networks

� Paradigm

– Connectionless

– Connection-oriented
� Access type

– Shared (i.e., multiaccess)

– Point-To-Point
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Point-To-Point Network

� Connects exactly two systems
� Often used for long distance
� Example: data circuit connecting two routers
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Data Circuit

� Leased from phone company
� Also called serial line because data is transmitted bit-

serially
� Originally designed to carry digital voice
� Cost depends on speed and distance
� T-series standards define low speeds (e.g. T1)
� STS and OC standards define high speeds
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Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits

– 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2,488.320 Mbps 38880
OC-192 9,953.280 Mbps 155520
OC-768 39,813.120 Mbps 622080
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Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits

– 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2,488.320 Mbps 38880
OC-192 9,953.280 Mbps 155520
OC-768 39,813.120 Mbps 622080

� Holy grail of networking: devices capable of accepting and
forwarding data at 10 Gbps (OC-192).

CS490N  --  Chapt. 2 7 2003



Local Area Networks

� Ethernet technology dominates
� Layer 1 standards

– Media and wiring

– Signaling

– Handled by dedicated interface chips

– Unimportant to us
� Layer 2 standards

– MAC framing and addressing
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MAC Addressing

� Three address types

– Unicast (single computer)

– Broadcast (all computers in broadcast domain)

– Multicast (some computers in broadcast domain)
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More Terminology

� Internet

– Interconnection of multiple networks

– Allows heterogeneity of underlying networks
� Network scope

– Local Area Network (LAN) covers limited distance

– Wide Area Network (WAN) covers arbitrary distance
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Network System

� Individual hardware component
� Serves as fundamental building block
� Used in networks and internets
� May contain processor and software
� Operates at one or more layers of the protocol stack
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Example Network Systems

� Layer 2

– Bridge

– Ethernet switch

– VLAN switch
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VLAN Switch

� Similar to conventional layer 2 switch

– Connects multiple computers

– Forwards frames among them

– Each computer has unique unicast address
� Differs from conventional layer 2 switch

– Allows manager to configure broadcast domains
� Broadcast domain known as virtual network
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Broadcast Domain

� Determines propagation of broadcast / multicast
� Originally corresponded to fixed hardware

– One per cable segment

– One per hub or switch
� Now configurable via VLAN switch

– Manager assigns ports to VLANs
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Example Network Systems
(continued)

� Layer 3

– Internet host computer

– IP router (layer 3 switch)
� Layer 4

– Basic Network Address Translator (NAT)

– Round-robin Web load balancer

– TCP terminator
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Example Network Systems
(continued)

� Layer 5

– Firewall

– Intrusion Detection System (IDS)

– Virtual Private Network (VPN)

– Softswitch running SIP

– Application gateway

– TCP splicer (also known as NAPT — Network Address
and Protocol Translator)

– Smart Web load balancer

– Set-top box
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Example Network Systems
(continued)

� Network control systems

– Packet / flow analyzer

– Traffic monitor

– Traffic policer

– Traffic shaper
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Questions?



III

Review Of Protocols And Packet Formats
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Protocol Layering

Application

Transport

Internet

Network Interface

Physical Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

� Five-layer Internet reference model
� Multiple protocols can occur at each layer
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Layer 2 Protocols

� Two protocols are important

– Ethernet

– ATM
� We will concentrate on Ethernet
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Ethernet Addressing

� 48-bit addressing
� Unique address assigned to each station (NIC)
� Destination address in each packet can specify delivery to

– A single computer (unicast)

– All computers in broadcast domain (broadcast)

– Some computers in broadcast domain (multicast)
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Ethernet Addressing
(continued)

� Broadcast address is all 1s
� Single bit determines whether remaining addresses are

unicast or multicast

x x x x x x xm x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

multicast bit
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Ethernet Frame Processing

6 6 2 46 - 1500

Dest.
Address

Source
Address

Frame
Type Data In Frame

Header Payload

� Dedicated physical layer hardware

– Checks and removes preamble and CRC on input

– Computes and appends CRC and preamble on output
� Layer 2 systems use source, destination and (possibly) type

fields
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Internet

� Set of (heterogeneous) computer networks interconnected by
IP routers

� End-user computers, called hosts, each attach to specific
network

� Protocol software

– Runs on both hosts and routers

– Provides illusion of homogeneity
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Internet Protocols Of Interest

� Layer 2

– Address Resolution Protocol (ARP)
� Layer 3

– Internet Protocol (IP)
� Layer 4

– User Datagram Protocol (UDP)

– Transmission Control Protocol (TCP)
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IP Datagram Format

0 4 8 16 19 24 31

VERS HLEN SERVICE TOTAL LENGTH

ID FLAGS F. OFFSET

TTL TYPE HDR CHECKSUM

SOURCE

DESTINATION

IP OPTIONS (MAY BE OMITTED) PADDING

BEGINNING OF PAYLOAD
...

� Format of each packet sent across Internet
� Fixed-size fields make parsing efficient
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IP Datagram Fields

Field Meaning

VERS Version number of IP being used (4)
HLEN Header length measured in 32-bit units
SERVICE Level of service desired
TOTAL LENGTH Datagram length in octets including header
ID Unique value for this datagram
FLAGS Bits to control fragmentation
F. OFFSET Position of fragment in original datagram
TTL Time to live (hop countdown)
TYPE Contents of payload area
HDR CHECKSUM One’s-complement checksum over header
SOURCE IP address of original sender
DESTINATION IP address of ultimate destination
IP OPTIONS Special handling parameters
PADDING To make options a 32-bit multiple
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IP addressing

� 32-bit Internet address assigned to each computer
� Virtual, hardware independent value
� Prefix identifies network; suffix identifies host
� Network systems use address mask to specify boundary

between prefix and suffix
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Next-Hop Forwarding

� Routing table

– Found in both hosts and routers

– Stores ( destination, mask, next_hop ) tuples
� Route lookup

– Takes destination address as argument

– Finds next hop

– Uses longest-prefix match
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Next-Hop Forwarding

� Routing table

– Found in both hosts and routers

– Stores ( destination, mask, next_hop ) tuples
� Route lookup

– Takes destination address as argument

– Finds next hop

– Uses longest-prefix match
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UDP Datagram Format

0 16 31

SOURCE PORT DESTINATION PORT

MESSAGE LENGTH CHECKSUM

BEGINNING OF PAYLOAD
.
.
.

Field Meaning

SOURCE PORT ID of sending application
DESTINATION PORT ID of receiving application
MESSAGE LENGTH Length of datagram including the header
CHECKSUM One’s-complement checksum over entire datagram

CS490N  --  Chapt. 3 13 2003



TCP Segment Format

0 4 10 16 24 31

SOURCE PORT DESTINATION PORT

SEQUENCE

ACKNOWLEDGEMENT

HLEN NOT USED CODE BITS WINDOW

CHECKSUM URGENT PTR

OPTIONS (MAY BE OMITTED) PADDING

BEGINNING OF PAYLOAD
...

� Sent end-to-end
� Fixed-size fields make parsing efficient
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TCP Segment Fields

Field Meaning

SOURCE PORT ID of sending application
DESTINATION PORT ID of receiving application
SEQUENCE Sequence number for data in payload
ACKNOWLEDGEMENT Acknowledgement of data received
HLEN Header length measured in 32-bit units
NOT USED Currently unassigned
CODE BITS URGENT, ACK, PUSH, RESET, SYN, FIN
WINDOW Receiver’s buffer size for additional data
CHECKSUM One’s-complement checksum over entire segment
URGENT PTR Pointer to urgent data in segment
OPTIONS Special handling
PADDING To make options a 32-bit multiple
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Illustration Of Encapsulation

ETHERNET HDR. ETHERNET PAYLOAD

IP HEADER IP PAYLOAD

UDP HEADER UDP PAYLOAD

� Field in each header specifies type of encapsulated packet
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Example ARP Packet Format

0 8 16 24 31

ETHERNET ADDRESS TYPE (1) IP ADDRESS TYPE (0800)

ETH ADDR LEN (6) IP ADDR LEN (4) OPERATION

SENDER’S ETH ADDR (first 4 octets)

SENDER’S ETH ADDR (last 2 octets) SENDER’S IP ADDR (first 2 octets)

SENDER’S IP ADDR (last 2 octets) TARGET’S ETH ADDR (first 2 octets)

TARGET’S ETH ADDR (last 4 octets)

TARGET’S IP ADDR (all 4 octets)

� Format when ARP used with Ethernet and IP
� Each Ethernet address is six octets
� Each IP address is four octets
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End Of Review



Questions?



IV

Conventional Computer Hardware Architecture
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Software-Based Network System

� Uses conventional hardware (e.g., PC)
� Software

– Runs the entire system

– Allocates memory

– Controls I/O devices

– Performs all protocol processing
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Why Study Protocol Processing
On Conventional Hardware?

� Past

– Employed in early IP routers

– Many algorithms developed / optimized for conventional
hardware

� Present

– Used in low-speed network systems

– Easiest to create / modify

– Costs less than special-purpose hardware
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Why Study Protocol Processing
On Conventional Hardware?

(continued)

� Future

– Processors continue to increase in speed

– Some conventional hardware present in all systems
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Why Study Protocol Processing
On Conventional Hardware?

(continued)

� Future

– Processors continue to increase in speed

– Some conventional hardware present in all systems

– You will build software-based systems in lab!
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Serious Question

� Which is growing faster?

– Processing power

– Network bandwidth
� Note: if network bandwidth growing faster

– Need special-purpose hardware

– Conventional hardware will become irrelevant
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Growth Of Technologies
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Conventional Computer Hardware

� Four important aspects

– Processor

– Memory

– I/O interfaces

– One or more buses
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Illustration Of Conventional
Computer Architecture

bus

CPU MEMORY

. . .

network interfaces and other I/O devices

� Bus is central, shared interconnect
� All components contend for use
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Bus Organization And Operations

. . . . . . . . .

control lines address lines data lines

� Parallel wires (K+N+C total)
� Used to pass

– An address of K bits

– A data value of N bits (width of the bus)

– Control information of C bits
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Bus Width

� Wider bus

– Transfers more data per unit time

– Costs more

– Requires more physical space
� Compromise: to simulate wider bus, use hardware that

multiplexes transfers

CS490N  --  Chapt. 4 9 2003



Bus Paradigm

� Only two basic operations

– Fetch

– Store
� All operations cast as forms of the above
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Fetch/Store

� Fundamental paradigm
� Used throughout hardware, including network processors
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Fetch Operation

� Place address of a device on address lines
� Issue fetch on control lines
� Wait for device that owns the address to respond
� If successful, extract value (response) from data lines
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Store Operation

� Place address of a device on address lines
� Place value on data lines
� Issue store on control lines
� Wait for device that owns the address to respond
� If unsuccessful, report error

CS490N  --  Chapt. 4 13 2003



Example Of Operations Mapped
Into Fetch/Store Paradigm

� Imagine disk device attached to a bus
� Assume the hardware can perform three (nontransfer)

operations:

– Start disk spinning

– Stop disk

– Determine current status
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Example Of Operations Mapped
Into Fetch/Store Paradigm

(continued)

� Assign the disk two contiguous bus addresses D and D+1
� Arrange for store of nonzero to address D to start disk

spinning
� Arrange for store of zero to address D to stop disk
� Arrange for fetch from address D+1 to return current status
� Note: effect of store to address D+1 can be defined as

– Appears to work, but has no effect

– Returns an error
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Bus Address Space

� Arbitrary hardware can be attached to bus
� K address lines result in 2k possible bus addresses
� Address can refer to

– Memory (e.g., RAM or ROM)

– I/O device
� Arbitrary devices can be placed at arbitrary addresses
� Address space can contain ‘‘holes’’
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Bus Address Terminology

� Device on bus known as memory mapped I/O
� Locations that correspond to nontransfer operations known

as Control and Status Registers (CSRs)
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Example Bus Address Space

disk

NIC

memory

hole (unassigned)

hole (unassigned)

hole (unassigned)

lowest bus address

highest bus address
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Network I/O On
Conventional Hardware

� Network Interface Card (NIC)

– Attaches between bus and network

– Operates like other I/O devices

– Handles electrical/optical details of network

– Handles electrical details of bus

– Communicates over bus with CPU or other devices
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Making Network I/O Fast

� Key idea: migrate more functionality onto NIC
� Four techniques used with bus

– Onboard address recognition & filtering

– Onboard packet buffering

– Direct Memory Access (DMA)

– Operation and buffer chaining

CS490N  --  Chapt. 4 20 2003



Onboard Address Recognition And Filtering

� NIC given set of addresses to accept

– Station’s unicast address

– Network broadcast address

– Zero or more multicast addresses
� When packet arrives, NIC checks destination address

– Accept packet if address on list

– Discard others

CS490N  --  Chapt. 4 21 2003



Onboard Packet Buffering

� NIC given high-speed local memory
� Incoming packet placed in NIC’s memory
� Allows computer’s memory/bus to operate slower than

network
� Handles small packet bursts

CS490N  --  Chapt. 4 22 2003



Direct Memory Access (DMA)

� CPU

– Allocates packet buffer in memory

– Passes buffer address to NIC

– Goes on with other computation
� NIC

– Accepts incoming packet from network

– Copies packet over bus to buffer in memory

– Informs CPU that packet has arrived
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Buffer Chaining

� CPU

– Allocates multiple buffers

– Passes linked list to NIC
� NIC

– Receives next packet

– Divides into one or more buffers
� Advantage: a buffer can be smaller than packet
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Operation Chaining

� CPU

– Allocates multiple buffers

– Builds linked list of operations

– Passes list to NIC
� NIC

– Follows list and performs instructions

– Interrupts CPU after each operation
� Advantage: multiple operations proceed without CPU

intervention
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Illustration Of
Operation Chaining

r r r

packet buffer packet buffer packet buffer

� Optimizes movement of data to memory
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Data Flow Diagram

memoryNIC

data arrives

data leaves

� Depicts flow of data through hardware units
� Used throughout the course and text
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Summary

� Software-based network systems run on conventional
hardware

– Processor

– Memory

– I/O devices

– Bus
� Network interface cards can be optimized to reduce CPU

load
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Questions?



V

Basic Packet Processing:
Algorithms And Data Structures
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Copying

� Used when packet moved from one memory location to
another

� Expensive
� Must be avoided whenever possible

– Leave packet in buffer

– Pass buffer address among threads/layers
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Buffer Allocation

� Possibilities

– Large, fixed buffers

– Variable-size buffers

– Linked list of fixed-size blocks
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Buffer Addressing

� Buffer address must be resolvable in all contexts
� Easiest implementation: keep buffers in kernel space
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Integer Representation

� Two standards

– Little endian (least-significant byte at lowest address)

– Big endian (most-significant byte at lowest address)
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Illustration Of Big And
Little Endian Integers

1 2 3 4

4 3 2 1

little endian

big endian

increasing memory addresses

increasing memory addresses
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Integer Conversion

� Needed when heterogeneous computers communicate
� Protocols define network byte order
� Computers convert to network byte order
� Typical library functions

Function data size Translation

ntohs 16 bits Network byte order to host’s byte order
htons 16 bits Host’s byte order to network byte order
ntohl 32 bits Network byte order to host’s byte order
htonl 32 bits Host’s byte order to network byte order
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Examples Of Algorithms Implemented
With Software-Based Systems

� Layer 2

– Ethernet bridge
� Layer 3

– IP forwarding

– IP fragmentation and reassembly
� Layer 4

– TCP connection recognition and splicing
� Other

– Hash table lookup
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Why Study These Algorithms?
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Why Study These Algorithms?

� Provide insight on packet processing tasks
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Why Study These Algorithms?

� Provide insight on packet processing tasks
� Reinforce concepts
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Why Study These Algorithms?

� Provide insight on packet processing tasks
� Reinforce concepts
� Help students recall protocol details

CS490N  --  Chapt. 5 9 2003



Why Study These Algorithms?

� Provide insight on packet processing tasks
� Reinforce concepts
� Help students recall protocol details
� You will need them in lab!
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Ethernet Bridge

� Used between a pair of Ethernets
� Provides transparent connection
� Listens in promiscuous mode
� Forwards frames in both directions
� Uses addresses to filter
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Bridge Filtering

� Uses source address in frames to identify computers on each
network

� Uses destination address to decide whether to forward frame
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Bridge Algorithm

Assume: two network interfaces each operating in promiscuous
mode.
Create an empty list, L, that will contain pairs of values;
Do forever {

Acquire the next frame to arrive;
Set I to the interface over which the frame arrived;
Extract the source address, S;
Extract the destination address, D;
Add the pair ( S, I ) to list L if not already present.
If the pair ( D, I ) appears in list L {

Drop the frame;
} Else {

Forward the frame over the other interface;
}

}
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Implementation Of Table Lookup

� Need high speed (more on this later)
� Software-based systems typically use hashing for table

lookup
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Hashing

� Optimizes number of probes
� Works well if table not full
� Practical technique: double hashing
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Hashing Algorithm

Given: a key, a table in memory, and the table size N.
Produce: a slot in the table that corresponds to the key

or an empty table slot if the key is not in the table.
Method: double hashing with open addressing.
Choose P1 and P2 to be prime numbers;
Fold the key to produce an integer, K;
Compute table pointer Q equal to ( P1 × K ) modulo N;
Compute increment R equal to ( P2 × K ) modulo N;
While (table slot Q not equal to K and nonempty) {

Q ← (Q + R) modulo N;
}
At this point, Q either points to an empty table slot or to the

slot containing the key.
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Address Lookup

� Computer can compare integer in one operation
� Network address can be longer than integer (e.g., 48 bits)
� Two possibilities

– Use multiple comparisons per probe

– Fold address into integer key
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Folding

� Maps N-bit value into M-bit key, M < N
� Typical technique: exclusive or
� Potential problem: two values map to same key
� Solution: compare full value when key matches
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IP Forwarding

� Used in hosts as well as routers
� Conceptual mapping

(next hop, interface) ← f(datagram, routing table)

� Table driven
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IP Routing Table

� One entry per destination
� Entry contains

– 32-bit IP address of destination

– 32-bit address mask

– 32-bit next-hop address

– N-bit interface number
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Example IP Routing Table

Destination Address Next-Hop Interface
Address Mask Address Number

192.5.48.0 255.255.255.0 128.210.30.5 2
128.10.0.0 255.255.0.0 128.210.141.12 1
0.0.0.0 0.0.0.0 128.210.30.5 2

� Values stored in binary
� Interface number is for internal use only
� Zero mask produces default route
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IP Forwarding Algorithm

Given: destination address A and routing table R.
Find: a next hop and interface used to route datagrams to A.
For each entry in table R {

Set MASK to the Address Mask in the entry;
Set DEST to the Destination Address in the entry;
If (A & MASK) == DEST {

Stop; use the next hop and interface in the entry;
}

}
If this point is reached, declare error: no route exists;
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IP Fragmentation

� Needed when datagram larger than network MTU
� Divides IP datagram into fragments
� Uses FLAGS bits in datagram header

0 D M FLAGS bits

0 = last fragment; 1 = more fragments

0 = may fragment; 1 = do not fragment

Reserved (must be zero)
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IP Fragmentation Algorithm
(Part 1: Initialization)

Given: an IP datagram, D, and a network MTU.
Produce: a set of fragments for D.
If the DO NOT FRAGMENT bit is set {

Stop and report an error;

}
Compute the size of the datagram header, H;
Choose N to be the largest multiple of 8 such

that H+N ≤ MTU;
Initialize an offset counter, O, to zero;
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IP Fragmentation Algorithm
(Part 2: Processing)

Repeat until datagram empty {

Create a new fragment that has a copy of D’s header;

Extract up to the next N octets of data from D and place

the data in the fragment;

Set the MORE FRAGMENTS bit in fragment header;

Set TOTAL LENGTH field in fragment header to be H+N;

Set FRAGMENT OFFSET field in fragment header to O;

Compute and set the CHECKSUM field in fragment

header;

Increment O by N/8;

}
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Reassembly

� Complement of fragmentation
� Uses IP SOURCE ADDRESS and IDENTIFICATION fields

in datagram header to group related fragments
� Joins fragments to form original datagram
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Reassembly Algorithm

Given: a fragment, F, add to a partial reassembly.

Method: maintain a set of fragments for each datagram.

Extract the IP source address, S, and ID fields from F;

Combine S and ID to produce a lookup key, K;

Find the fragment set with key K or create a new set;

Insert F into the set;

If the set contains all the data for the datagram {

Form a completely reassembled datagram and process it;

}

CS490N  --  Chapt. 5 25 2003



Data Structure For Reassembly

� Two parts

– Buffer large enough to hold original datagram

– Linked list of pieces that have arrived

40 80 40

fragment in
reassembly buffer

reassembly buffer
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TCP Connection

� Involves a pair of endpoints
� Started with SYN segment
� Terminated with FIN or RESET segment
� Identified by 4-tuple

( src addr, dest addr, src port, dest port )
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TCP Connection Recognition Algorithm
(Part 1)

Given: a copy of traffic passing across a network.

Produce: a record of TCP connections present in the traffic.

Initialize a connection table, C, to empty;

For each IP datagram that carries a TCP segment {

Extract the IP source, S, and destination, D, addresses;

Extract the source, P1, and destination, P2, port numbers;

Use (S,D,P1,P2) as a lookup key for table C and

create a new entry, if needed;
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TCP Connection Recognition Algorithm
(Part 2)

If the segment has the RESET bit set, delete the entry;

Else if the segment has the FIN bit set, mark the
connection

closed in one direction, removing the entry from C if

the connection was previously closed in the other;

Else if the segment has the SYN bit set, mark the
connection as

being established in one direction, making it completely

established if it was previously marked as being

established in the other;

}
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TCP Splicing

� Join two TCP connections
� Allow data to pass between them
� To avoid termination overhead translate segment header

fields

– Acknowledgement number

– Sequence number
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Illustration Of TCP Splicing

splicerHost
A

Host
B

TCP connection #1 TCP connection #2

sequence 200 sequence 50 sequence 860 sequence 1200

Connection Sequence Connection Sequence
& Direction Number & Direction Number

Incoming #1 200 Incoming #2 1200
Outgoing #2 860 Outgoing #1 50

Change 660 Change -1150
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TCP Splicing Algorithm
(Part 1)

Given: two TCP connections.

Produce: sequence translations for splicing the connection.

Compute D1, the difference between the starting sequences

on incoming connection 1 and outgoing connection 2;

Compute D2, the difference between the starting sequences

on incoming connection 2 and outgoing connection 1;

CS490N  --  Chapt. 5 32 2003



TCP Splicing Algorithm
(Part 2)

For each segment {

If segment arrived on connection 1 {

Add D1 to sequence number;

Subtract D2 from acknowledgement number;

} else if segment arrived on connection 2 {

Add D2 to sequence number;

Subtract D1 from acknowledgement number;

}

}
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Summary

� Packet processing algorithms include

– Ethernet bridging

– IP fragmentation and reassembly

– IP forwarding

– TCP splicing
� Table lookup important

– Full match for layer 2

– Longest prefix match for layer 3
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Questions?



For Hands-On Experience With

A Software-Based System:

Enroll in CS 636 !
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VI

Packet Processing Functions
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Goal

� Identify functions that occur in packet processing
� Devise set of operations sufficient for all packet processing
� Find an efficient implementation for the operations
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Packet Processing Functions We Will Consider

� Address lookup and packet forwarding
� Error detection and correction
� Fragmentation, segmentation, and reassembly
� Frame and protocol demultiplexing
� Packet classification
� Queueing and packet discard
� Scheduling and timing
� Security: authentication and privacy
� Traffic measurement, policing, and shaping
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Address Lookup And Packet Forwarding

� Forwarding requires address lookup
� Lookup is table driven
� Two types

– Exact match (typically layer 2)

– Longest-prefix match (typically layer 3)
� Cost depends on size of table and type of lookup
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Error Detection And Correction

� Data sent with packet used as verification

– Checksum

– CRC
� Cost proportional to size of packet
� Often implemented with special-purpose hardware
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An Important Note About Cost

The cost of an operation is proportional to the amount of data
processed. An operation such as checksum computation that
requires examination of all the data in a packet is among the
most expensive.
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Fragmentation, Segmentation, And Reassembly

� IP fragments and reassembles datagrams
� ATM segments and reassembles AAL5 packets
� Same idea; details differ
� Cost is high because

– State must be kept and managed

– Unreassembled fragments occupy memory
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Frame And Protocol Demultiplexing

� Traditional technique used in layered protocols
� Type appears in each header

– Assigned on output

– Used on input to select ‘‘next’’ protocol
� Cost of demultiplexing proportional to number of layers
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Packet Classification

� Alternative to demultiplexing
� Crosses multiple layers
� Achieves lower cost
� More on classification later in the course
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Queueing And Packet Discard

� General paradigm is store-and-forward

– Incoming packet placed in queue

– Outgoing packet placed in queue
� When queue is full, choose packet to discard
� Affects throughput of higher-layer protocols
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Queueing Priorities

� Multiple queues used to enforce priority among packets
� Incoming packet

– Assigned priority as function of contents

– Placed in appropriate priority queue
� Queueing discipline

– Examines priority queues

– Chooses which packet to send
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Examples Of Queueing Disciplines

� Priority Queueing

– Assign unique priority number to each queue

– Choose packet from highest priority queue that is
nonempty

– Known as strict priority queueing

– Can lead to starvation
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Examples Of Queueing Disciplines
(continued)

� Weighted Round Robin (WRR)

– Assign unique priority number to each queue

– Process all queues round-robin

– Compute N, max number of packets to select from a
queue proportional to priority

– Take up to N packets before moving to next queue

– Works well if all packets equal size
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Examples Of Queueing Disciplines
(continued)

� Weighted Fair Queueing (WFQ)

– Make selection from queue proportional to priority

– Use packet size rather than number of packets

– Allocates priority to amount of data from a queue rather
than number of packets
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Scheduling And Timing

� Important mechanisms
� Used to coordinate parallel and concurrent tasks

– Processing on multiple packets

– Processing on multiple protocols

– Multiple processors
� Scheduler attempts to achieve fairness
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Security: Authentication And Privacy

� Authentication mechanisms

– Ensure sender’s identity
� Confidentiality mechanisms

– Ensure that intermediaries cannot interpret packet
contents

� Note: in common networking terminology, privacy refers to
confidentiality

– Example: Virtual Private Networks
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Traffic Measurement And Policing

� Used by network managers
� Can measure aggregate traffic or per-flow traffic
� Often related to Service Level Agreement (SLA)
� Cost is high if performed in real-time
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Traffic Shaping

� Make traffic conform to statistical bounds
� Typical use

– Smooth bursts

– Avoid packet trains
� Only possibilities

– Discard packets (seldom used)

– Delay packets
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Example Traffic Shaping Mechanisms

� Leaky bucket

– Easy to implement

– Popular

– Sends steady number of packets per second

– Rate depends on number of packets waiting

– Does not guarantee steady data rate
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Example Traffic Shaping Mechanisms
(continued)

� Token bucket

– Sends steady number of bits per second

– Rate depends on number of bits waiting

– Achieves steady data rate

– More difficult to implement
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Illustration Of Traffic Shaper

packet queue

packets
arrive

packets
leave

forwards packets at
a steady rate

� Packets

– Arrive in bursts

– Leave at steady rate
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Timer Management

� Fundamental piece of network system
� Needed for

– Scheduling

– Traffic shaping

– Other protocol processing (e.g., retransmission)
� Cost

– Depends on number of timer operations (e.g., set,
cancel)

– Can be high
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Summary

� Primary packet processing functions are

– Address lookup and forwarding

– Error detection and correction

– Fragmentation and reassembly

– Demultiplexing and classification

– Queueing and discard

– Scheduling and timing

– Security functions

– Traffic measurement, policing, and shaping
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Questions?



VII

Protocol Software On A
Conventional Processor
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Possible Implementations Of
Protocol Software

� In an application program

– Easy to program

– Runs as user-level process

– No direct access to network devices

– High cost to copy data from kernel address space

– Cannot run at wire speed
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Possible Implementations Of
Protocol Software

(continued)

� In an embedded system

– Special-purpose hardware device

– Dedicated to specific task

– Ideal for stand-alone system

– Software has full control

CS490N  --  Chapt. 7 3 2003



Possible Implementations Of
Protocol Software

(continued)

� In an embedded system

– Special-purpose hardware device

– Dedicated to specific task

– Ideal for stand-alone system

– Software has full control

– You will experience this in lab!
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Possible Implementations Of
Protocol Software

(continued)

� In an operating system kernel

– More difficult to program than application

– Runs with kernel privilege

– Direct access to network devices
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Interface To The Network

� Known as Application Program Interface (API)
� Can be

– Asynchronous

– Synchronous
� Synchronous interface can use

– Blocking

– Polling
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Asynchronous API

� Also known as event-driven
� Programmer

– Writes set of functions

– Specifies which function to invoke for each event type
� Programmer has no control over function invocation
� Functions keep state in shared memory
� Difficult to program
� Example: function f() called when packet arrives
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Synchronous API Using Blocking

� Programmer

– Writes main flow-of-control

– Explicitly invokes functions as needed

– Built-in functions block until request satisfied
� Example: function wait_for_packet() blocks until packet

arrives
� Easier to program
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Synchronous API Using Polling

� Nonblocking form of synchronous API
� Each function call returns immediately

– Performs operation if available

– Returns error code otherwise
� Example: function try_for_packet() either returns next

packet or error code if no packet has arrived
� Closer to underlying hardware
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Typical Implementations And APIs

� Application program

– Synchronous API using blocking (e.g., socket API)

– Another application thread runs while an application
blocks

� Embedded systems

– Synchronous API using polling

– CPU dedicated to one task
� Operating systems

– Asynchronous API

– Built on interrupt mechanism
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Example Asynchronous API

� Design goals

– For use with network processor

– Simplest possible interface

– Sufficient for basic packet processing tasks
� Includes

– I/O functions

– Timer manipulation functions
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Example Asynchronous API
(continued)

� Initialization and termination functions

– on_startup()

– on_shutdown()
� Input function (called asynchronously)

– recv_frame()
� Output functions

– new_fbuf()

– send_frame()
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Example Asynchronous API
(continued)

� Timer functions (called asynchronously)

– delayed_call()

– periodic_call()

– cancel_call()
� Invoked by outside application

– console_command()
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Processing Priorities

� Determine which code CPU runs at any time
� General idea

– Hardware devices need highest priority

– Protocol software has medium priority

– Application programs have lowest priority
� Queues provide buffering across priorities
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Illustration Of Priorities

device drivers
handling frames

protocol
processing

Applications

NIC1 NIC2

highest priority

medium priority

lowest priority

packet queue
between levels
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Implementation Of Priorities
In An Operating System

� Two possible approaches

– Interrupt mechanism

– Kernel threads
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Interrupt Mechanism

� Built into hardware
� Operates asynchronously
� Saves current processing state
� Changes processor status
� Branches to specified location
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Two Types Of Interrupts

� Hardware interrupt

– Caused by device (bus)

– Must be serviced quickly
� Software interrupt

– Caused by executing program

– Lower priority than hardware interrupt

– Higher priority than other OS code
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Software Interrupts And
Protocol Code

� Protocol stack operates as software interrupt
� When packet arrives

– Hardware interrupts

– Device driver raises software interrupt
� When device driver finishes

– Hardware interrupt clears

– Protocol code is invoked
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Kernel Threads

� Alternative to interrupts
� Familiar to programmer
� Finer-grain control than software interrupts
� Can be assigned arbitrary range of priorities
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Conceptual Organization

� Packet passes among multiple threads of control
� Queue of packets between each pair of threads
� Threads synchronize to access queues
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Possible Organization Of
Kernel Threads For Layered Protocols

� One thread per layer
� One thread per protocol
� Multiple threads per protocol
� Multiple threads per protocol plus timer management

thread(s)
� One thread per packet
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One Thread Per Layer

� Easy for programmer to understand
� Implementation matches concept
� Allows priority to be assigned to each layer
� Means packet is enqueued once per layer
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Illustration Of One Thread Per Layer

applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T2

T3

T4

queue

queue

queue

Layer 2

Layer 3

Layer 4

packets arrive packets leave

app. sends app. receives
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One Thread Per Protocol

� Like one thread per layer

– Implementation matches concept

– Means packet is enqueued once per layer
� Advantages over one thread per layer

– Easier for programmer to understand

– Finer-grain control

– Allows priority to be assigned to each protocol
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Illustration Of One Thread Per Protocol

applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

udp tcp

queue queue

� TCP and UDP reside at same layer
� Separation allows priority
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Multiple Threads Per Protocol

� Further division of duties
� Simplifies programming
� More control than single thread
� Typical division

– Thread for incoming packets

– Thread for outgoing packets

– Thread for management/timing
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Illustration Of Multiple
Threads Used With TCP

applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tcp

tim.

queue

timer thread

� Separate timer makes programming easier
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Timers And Protocols

� Many protocols implement timeouts

– TCP

* Retransmission timeout

* 2MSL timeout

– ARP

* Cache entry timeout

– IP

* Reassembly timeout
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Multiple Threads Per Protocol
Plus Timer Management Thread(s)

� Observations

– Many protocols each need timer functionality

– Each timer thread incurs overhead
� Solution: consolidate timers for multiple protocols
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Is One Timer Thread Sufficient?

� In theory

– Yes
� In practice

– Large range of timeouts (microseconds to tens of
seconds)

– May want to give priority to some timeouts
� Solution: two or more timer threads
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Multiple Timer Threads

� Two threads usually suffice
� Large-granularity timer

– Values specified in seconds

– Operates at lower priority
� Small-granularity timer

– Values specified in microseconds

– Operates at higher priority
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Thread Synchronization

� Thread for layer i

– Needs to pass a packet to layer i + 1

– Enqueues the packet
� Thread for layer i + 1

– Retrieves packet from the queue
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Thread Synchronization

� Thread for layer i

– Needs to pass a packet to layer i + 1

– Enqueues the packet
� Thread for layer i + 1

– Retrieves packet from the queue
� Context switch required!
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Context Switch

� OS function
� CPU passes from current thread to a waiting thread
� High cost
� Must be minimized
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One Thread Per Packet

� Preallocate set of threads
� Thread operation

– Waits for packet to arrive

– Moves through protocol stack

– Returns to wait for next packet
� Minimizes context switches
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Summary

� Packet processing software usually runs in OS
� API can be synchronous or asynchronous
� Priorities achieved with

– Software interrupts

– Threads
� Variety of thread architectures possible
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Questions?



VIII

Hardware Architectures
For Protocol Processing

And
Aggregate Rates
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A Brief History Of
Computer Hardware

� 1940s

– Beginnings
� 1950s

– Consolidation on von Neumann architecture

– I/O controlled by CPU
� 1960s

– I/O becomes important

– Evolution of third generation architecture with interrupts
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I/O Processing

� Evolved from after-thought to central influence
� Low-end systems (e.g., microcontrollers)

– Dumb I/O interfaces

– CPU does all the work (polls devices)

– Single, shared memory

– Low cost, but low speed
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I/O Processing
(continued)

� Mid-range systems (e.g., minicomputers)

– Single, shared memory

– I/O interfaces contain logic for transfer and status
operations

– CPU

* Starts device then resumes processing

– Device

* Transfers data to / from memory

* Interrupts when operation complete
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I/O Processing
(continued)

� High-end systems (e.g., mainframes)

– Separate, programmable I/O processor

– OS downloads code to be run

– Device has private on-board buffer memory

– Examples: IBM channel, CDC peripheral processor
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Networking Systems Evolution

� Twenty year history
� Same trend as computer architecture

– Began with central CPU

– Shift to emphasis on I/O
� Three main generations
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First Generation Network Systems

� Traditional software-based router
� Used conventional (minicomputer) hardware

– Single general-purpose processor

– Single shared memory

– I/O over a bus

– Network interface cards use same design as other I/O
devices
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Protocol Processing In
First Generation Network Systems

all other
processing

framing &
address

recognition

framing &
address

recognition

NIC1 NIC2Standard CPU

� General-purpose processor handles most tasks
� Sufficient for low-speed systems
� Note: we will examine other generations later in the course
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How Fast Does A CPU Need To Be?

� Depends on

– Rate at which data arrives

– Amount of processing to be performed
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Two Measures Of Speed

� Data rate (bits per second)

– Per interface rate

– Aggregate rate
� Packet rate (packets per second)

– Per interface rate

– Aggregate rate
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How Fast Is A Fast Connection?

� Definition of fast data rate keeps changing

– 1960: 10 Kbps

– 1970: 1 Mbps

– 1980: 10 Mbps

– 1990: 100 Mbps

– 2000: 1000 Mbps (1 Gbps)

– 2003: 2400 Mbps
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How Fast Is A Fast Connection?

� Definition of fast data rate keeps changing

– 1960: 10 Kbps

– 1970: 1 Mbps

– 1980: 10 Mbps

– 1990: 100 Mbps

– 2000: 1000 Mbps (1 Gbps)

– 2003: 2400 Mbps

– Soon: 10 Gbps???
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Aggregate Rate Vs.
Per-Interface Rate

� Interface rate

– Rate at which data enters / leaves
� Aggregate

– Sum of interface rates

– Measure of total data rate system can handle
� Note: aggregate rate crucial if CPU handles traffic from all

interfaces
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A Note About System Scale

The aggregate data rate is defined to be the sum of the rates at
which traffic enters or leaves a system. The maximum
aggregate data rate of a system is important because it limits
the type and number of network connections the system can
handle.
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Packet Rate Vs. Data Rate

� Sources of CPU overhead

– Per-bit processing

– Per-packet processing
� Interface hardware handles much of per-bit processing
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A Note About System Scale

For protocol processing tasks that have a fixed cost per packet,
the number of packets processed is more important than the
aggregate data rate.
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Example Packet Rates

Technology Network Packet Rate Packet Rate
Data Rate For Small Packets For Large Packets
In Gbps In Kpps In Kpps

10Base-T 0.010 19.5 0.8
100Base-T 0.100 195.3 8.2
OC-3 0.156 303.8 12.8
OC-12 0.622 1,214.8 51.2
1000Base-T 1.000 1,953.1 82.3
OC-48 2.488 4,860.0 204.9
OC-192 9.953 19,440.0 819.6
OC-768 39.813 77,760.0 3,278.4

� Key concept: maximum packet rate occurs with minimum-
size packets
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Bar Chart Of Example Packet Rates

100 Kpps

101 Kpps

102 Kpps

103 Kpps

104 Kpps

105 Kpps

19.5

195.3
303.8

1214.8
1953.1

4860.0

19440.0

77760.0

10Base-T 100Base-T OC-3 OC-12 1000Base-T OC-48 OC-192 OC-768
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Bar Chart Of Example Packet Rates

100 Kpps

101 Kpps

102 Kpps

103 Kpps

104 Kpps

105 Kpps

19.5

195.3
303.8

1214.8
1953.1

4860.0

19440.0

77760.0

10Base-T 100Base-T OC-3 OC-12 1000Base-T OC-48 OC-192 OC-768

� Gray areas show rates for large packets
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Time Per Packet

Technology Time per packet Time per packet
for small packets for large packets

( in µs ) ( in µs )

10Base-T 51.20 1,214.40
100Base-T 5.12 121.44
OC-3 3.29 78.09
OC-12 0.82 19.52
1000Base-T 0.51 12.14
OC-48 0.21 4.88
OC-192 0.05 1.22
OC-768 0.01 0.31

� Note: these numbers are for a single connection!
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Conclusion

Software running on a general-purpose processor is an
insufficient architecture to handle high-speed networks because
the aggregate packet rate exceeds the capabilities of a CPU.
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Possible Ways To Solve
The CPU Bottleneck

� Fine-grain parallelism
� Symmetric coarse-grain parallelism
� Asymmetric coarse-grain parallelism
� Special-purpose coprocessors
� NICs with onboard processing
� Smart NICs with onboard stacks
� Cell switching
� Data pipelines
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Fine-Grain Parallelism

� Multiple processors
� Instruction-level parallelism
� Example:

– Parallel checksum: add values of eight consecutive
memory locations at the same time

� Assessment: insignificant advantages for packet processing
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Symmetric Coarse-Grain Parallelism

� Symmetric multiprocessor hardware

– Multiple, identical processors
� Typical design: each CPU operates on one packet
� Requires coordination
� Assessment: coordination and data access means N

processors cannot handle N times more packets than one
processor
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Asymmetric Coarse-Grain Parallelism

� Multiple processors
� Each processor

– Optimized for specific task

– Includes generic instructions for control
� Assessment

– Same problems of coordination and data access as
symmetric case

– Designer much choose how many copies of each
processor type
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Special-Purpose Coprocessors

� Special-purpose hardware
� Added to conventional processor to speed computation
� Invoked like software subroutine
� Typical implementation: ASIC chip
� Choose operations that yield greatest improvement in speed
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General Principle

To optimize computation, move operations that account for the
most CPU time from software into hardware.
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General Principle

To optimize computation, move operations that account for the
most CPU time from software into hardware.

� Idea known as Amdahl’s law (performance improvement
from faster hardware technology is limited to the fraction of
time the faster technology can be used)
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NICs And Onboard Processing

� Basic optimizations

– Onboard address recognition and filtering

– Onboard buffering

– DMA

– Buffer and operation chaining
� Further optimization possible
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Smart NICs With Onboard Stacks

� Add hardware to NIC

– Off-the-shelf chips for layer 2

– ASICs for layer 3
� Allows each NIC to operate independently

– Effectively a multiprocessor

– Total processing power increased dramatically
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Illustration Of Smart NICs
With Onboard Processing

all other
processing

most layer 2 processing
some layer 3 processing

most layer 2 processing
some layer 3 processing

Smart NIC1 Smart NIC2Standard CPU

� NIC handles layers 2 and 3
� CPU only handles exceptions
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Cell Switching

� Alternative to new hardware
� Changes

– Basic paradigm

– All details (e.g., protocols)
� Connection-oriented
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Cell Switching Details

� Fixed-size packets

– Allows fixed-size buffers

– Guaranteed time to transmit/receive
� Relative (connection-oriented) addressing

– Smaller address size

– Label on packet changes at each switch

– Requires connection setup
� Example: ATM
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Data Pipeline

� Move each packet through series of processors
� Each processor handles some tasks
� Assessment

– Well-suited to many protocol processing tasks

– Individual processor can be fast
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Illustration Of Data Pipeline

stage 1
stage 2

stage 3

stage 4

stage 5

packets enter
the pipeline

packets leave
the pipeline

interstage packet buffer

� Pipeline can contain heterogeneous processors
� Packets pass through each stage
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Summary

� Packet rate can be more important than data rate
� Highest packet rate achieved with smallest packets
� Rates measured per interface or aggregate
� Special hardware needed for highest-speed network systems

– Smart NIC can include part of protocol stack

– Parallel and pipelined hardware also possible

CS490N  --  Chapt. 8 33 2003



???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????

?Questions?



IX

Classification
And

Forwarding
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Recall

� Packet demultiplexing

– Used with layered protocols

– Packet proceeds through one layer at a time

– On input, software in each layer chooses module at next
higher layer

– On output, type field in each header specifies
encapsulation
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The Disadvantage Of Demultiplexing

Although it provides freedom to define and use arbitrary
protocols without introducing transmission overhead,
demultiplexing is inefficient because it imposes sequential
processing among layers.
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Packet Classification

� Alternative to demultiplexing
� Designed for higher speed
� Considers all layers at the same time
� Linear in number of fields
� Two possible implementations

– Software

– Hardware
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Example Classification

� Classify Ethernet frames carrying traffic to Web server
� Specify exact header contents in rule set
� Example

– Ethernet type field specifies IP

– IP type field specifies TCP

– TCP destination port specifies Web server
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Example Classification
(continued)

� Field sizes and values

– 2-octet Ethernet type is 080016

– 2-octet IP type is 6

– 2-octet TCP destination port is 80
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Illustration Of Encapsulated Headers

0 4 8 10 16 19 24 31

ETHERNET DEST. (0-1)

ETHERNET DESTINATION (2-5)

ETHERNET SOURCE (0-3)

ETHERNET SOURCE (4-5) ETHERNET TYPE

VERS HLEN SERVICE IP TOTAL LENGTH

IP IDENT FLAGS FRAG. OFFSET

IP TTL IP TYPE IP HDR. CHECKSUM

IP SOURCE ADDRESS

IP DESTINATION ADDRESS

TCP SOURCE PORT TCP DESTINATION PORT

TCP SEQUENCE

TCP ACKNOWLEDGEMENT

HLEN NOT USED CODE BITS TCP WINDOW

TCP CHECKSUM TCP URGENT PTR

Start Of TCP Data . . .

� Highlighted fields are used for classification of Web server
traffic
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Software Implementation
Of Classification

� Compare values in header fields
� Conceptually a logical and of all field comparisons
� Example

if ( (frame type == 0x0800) && (IP type == 6) && (TCP port == 80) )

declare the packet matches the classification;

else

declare the packet does not match the classification;
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Optimizing Software Classification

� Comparisons performed sequentially
� Can reorder comparisons to minimize effort
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Example Of Optimizing
Software Classification

� Assume

– 95.0% of all frames have frame type 080016

– 87.4% of all frames have IP type 6

– 74.3% of all frames have TCP port 80
� Also assume values 6 and 80 do not occur in corresponding

positions in non-IP packet headers
� Reordering tests can optimize processing time

CS490N  --  Chapt. 9 10 2003



Example Of Optimizing
Software Classification

(continued)

if ( (TCP port == 80) && (IP type == 6) && (frame type == 0x0800) )

declare the packet matches the classification;

else

declare the packet does not match the classification;

� At each step, test the field that will eliminate the most
packets
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Note About Optimization

Although the maximum number of comparisons in a software
classifier is fixed, the average number of comparisons is
determined by the order of the tests; minimum comparisons
result if, at each step, the classifier tests the field that
eliminates the most packets.
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Hardware Implementation Of Classification

� Can build special-purpose hardware
� Steps

– Extract needed fields

– Concatenate bits

– Place result in register

– Perform comparison
� Hardware can operate in parallel
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Illustration Of Hardware Classifier

Memory

hardware register

packet in memory

comparator

constant to compare

wide data path to move
packet headers from memory

to a hardware register

result of comparison

specific header bytes
extracted for comparison

� Constant for Web classifier is 08.00.06.01.5016
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Special Cases Of Classification

� Multiple categories
� Variable-size headers
� Dynamic classification
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In Practice

� Classification usually involves multiple categories
� Packets grouped together into flows
� May have a default category
� Each category specified with rule set
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Example Multi-Category Classification

� Flow 1: traffic destined for Web server
� Flow 2: traffic consisting of ICMP echo request packets
� Flow 3: all other traffic (default)
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Rule Sets

� Web server traffic

– 2-octet Ethernet type is 080016

– 2-octet IP type is 6

– 2-octet TCP destination port is 80
� ICMP echo traffic

– 2-octet Ethernet type is 080016

– 2-octet IP type is 1

– 1-octet ICMP type is 8
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Software Implementation Of Multiple Rules

if (frame type != 0x0800) {

send frame to flow 3;

} else if (IP type == 6 && TCP destination port == 80) {

send packet to flow 1;

} else if (IP type == 1 && ICMP type == 8) {

send packet to flow 2;

} else {

send frame to flow 3;

}

� Further optimization possible
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Variable-Size Packet Headers

� Fields not at fixed offsets
� Easily handled with software
� Finite cases can be specified in rules
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Example Variable-Size Header: IP Options

� Rule Set 1

– 2-octet frame type field contains 080016

– 1-octet field at the start of the datagram contains 4516

– 1-octet type field in the IP datagram contains 6

– 2-octet field 22 octets from start of the datagram
contains 80

� Rule Set 2

– 2-octet frame type field contains 080016

– 1-octet field at the start of the datagram contains 4616

– 1-octet type field in the IP datagram contains 6

– 2-octet field 26 octets from the start of datagram
contains 80
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Effect Of Protocol Design On Classification

� Fixed headers fastest to classify
� Each variable-size header adds one computation step
� In worst case, classification no faster than demultiplexing
� Extreme example: IPv6
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Hybrid Classification

hardware
classifier

software
classifier

. . .
. . .

packets arrive
for classification

exit for
unclassified packets

packets unrecognized
by hardware

packets classified into
flows by hardware packets classified into

flows by software

� Combines hardware and software mechanisms

– Hardware used for standard cases

– Software used for exceptions
� Note: software classifier can operate at slower rate
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Two Basic Types Of Classification

� Static

– Flows specified in rule sets

– Header fields and values known a priori
� Dynamic

– Flows created by observing packet stream

– Values taken from headers

– Allows fine-grain flows

– Requires state information
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Example Static Classification

� Allocate one flow per service type
� One header field used to identify flow

– IP TYPE OF SERVICE (TOS)
� Use DIFFSERV interpretation
� Note: Ethernet type field also checked
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Example Dynamic Classification

� Allocate flow per TCP connection
� Header fields used to identify flow

– IP source address

– IP destination address

– TCP source port number

– TCP destination port number
� Note: Ethernet type and IP type fields also checked
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Implementation Of Dynamic Classification

� Usually performed in software
� State kept in memory
� State information created/updated at wire speed
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Two Conceptual Bindings

classification: packet → flow

forwarding: flow → packet disposition

� Classification binding is usually 1-to-1
� Forwarding binding can be 1-to-1 or many-to-1
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Flow Identification

� Connection-oriented network

– Per-flow SVC can be created on demand

– Flow ID equals connection ID
� Connectionless network

– Flow ID used internally

– Each flow ID mapped to ( next hop, interface )
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Relationship Of Classification And Forwarding
In A Connection-Oriented Network

In a connection-oriented network, flow identifiers assigned by
classification can be chosen to match connection identifiers
used by the underlying network. Doing so makes forwarding
more efficient by eliminating one binding.

CS490N  --  Chapt. 9 30 2003



Forwarding In A Connectionless Network

� Route for flow determined when flow created
� Indexing used in place of route lookup
� Flow identifier corresponds to index of entry in forwarding

cache
� Forwarding cache must be changed when route changes
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Second Generation Network Systems

� Designed for greater scale
� Use classification instead of demultiplexing
� Decentralized architecture

– Additional computational power on each NIC

– NIC implements classification and forwarding
� High-speed internal interconnection mechanism

– Interconnects NICs

– Provides fast data path
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Illustration Of Second Generation
Network Systems Architecture

Forward-

ing

Class-

ification

Layer 1 & 2

(framing)

Forward-

ing

Class-

ification

Layer 1 & 2

(framing)fast data path

Control
And

Exceptions

Interface1 Interface2Standard CPU
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Classification And Forwarding Chips

� Sold by vendors
� Implement hardware classification and forwarding
� Typical configuration: rule sets given in ROM
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Summary

� Classification faster than demultiplexing
� Can be implemented in hardware or software
� Dynamic classification

– Uses packet contents to assign flows

– Requires state information
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XI

Network Processors: Motivation And Purpose
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Second Generation Network Systems

� Concurrent with ATM development (early 1990s)
� Purpose: scale to speeds faster than single CPU capacity
� Features

– Use classification instead of demultiplexing

– Decentralized architecture to offload CPU

– Design optimized for fast data path

CS490N  --  Chapt. 11 2 2003



Second Generation Network Systems
(details)

� Multiple network interfaces

– Powerful NIC

– Private buffer memory
� High-speed hardware interconnects NICs
� General-purpose processor only handles exceptions
� Sufficient for medium speed interfaces (100 Mbps)
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Reminder: Protocol Processing In
Second Generation Network Systems

Forward-
ing

Class-
ification

Layer 1 & 2
(framing)

Forward-
ing

Class-
ification

Layer 1 & 2
(framing)fast data path

Control
And

Exceptions

Interface1 Interface2Standard CPU

� NIC handles most of layers 1 - 3
� Fast-path forwarding avoids CPU completely

CS490N  --  Chapt. 11 4 2003



Third Generation Network Systems

� Late 1990s
� Functionality partitioned further
� Additional hardware on each NIC
� Almost all packet processing off-loaded from CPU
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Third Generation Design

� NIC contains

– ASIC hardware

– Embedded processor plus code in ROM
� NIC handles

– Classification

– Forwarding

– Traffic policing

– Monitoring and statistics
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Embedded Processor

� Two possibilities

– Complex Instruction Set Computer (CISC)

– Reduced Instruction Set Computer (RISC)
� RISC used often because

– Higher clock rates

– Smaller

– Lower power consumption
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Purpose Of Embedded Processor
In Third Generation Systems

Third generation systems use an embedded processor to handle
layer 4 functionality and exception packets that cannot be
forwarded across the fast path. An embedded processor
architecture is chosen because ease of implementation and
amenability to change are more important than speed.
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Protocol Processing In Third Generation Systems

Traffic Mgmt. (ASIC)

Other processing

switching fabric
Layers 1 & 2

Layer 4

Embedded
processor

Layer 3 & class.
ASIC

Layers 1 & 2

Layer 4

Embedded
Processor

Layer 3 & class.
ASIC

Interface1 Interface2standard CPU

� Special-purpose ASICs handle lower layer functions
� Embedded (RISC) processor handles layer 4
� CPU only handles low-demand processing
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Are Third Generation Systems Sufficient?
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Are Third Generation Systems Sufficient?

� Almost
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Are Third Generation Systems Sufficient?

� Almost . . . but not quite.
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Problems With Third Generation Systems

� High cost
� Long time to market
� Difficult to simulate/test
� Expensive and time-consuming to change

– Even trivial changes require silicon respin

– 18-20 month development cycle
� Little reuse across products
� Limited reuse across versions
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Problems With Third Generation Systems
(continued)

� No consensus on overall framework
� No standards for special-purpose support chips
� Requires in-house expertise (ASIC designers)
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A Fourth Generation

� Goal: combine best features of first generation and third
generation systems

– Flexibility of programmable processor

– High speed of ASICs
� Technology called network processors

CS490N  --  Chapt. 11 13 2003



Definition Of A Network Processor

A network processor is a special-purpose, programmable
hardware device that combines the low cost and flexibility of a
RISC processor with the speed and scalability of custom silicon
(i.e., ASIC chips). Network processors are building blocks used
to construct network systems.
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Network Processors: Potential Advantages

� Relatively low cost
� Straightforward hardware interface
� Facilities to access

– Memory

– Network interface devices
� Programmable
� Ability to scale to higher

– Data rates

– Packet rates
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Network Processors: Potential Advantages

� Relatively low cost
� Straightforward hardware interface
� Facilities to access

– Memory

– Network interface devices
� Programmable
� Ability to scale to higher

– Data rates

– Packet rates
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The Promise Of Programmability

� For producers

– Lower initial development costs

– Reuse software in later releases and related systems

– Faster time-to-market

– Same high speed as ASICs
� For consumers

– Much lower product cost

– Inexpensive (firmware) upgrades
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Choice Of Instruction Set

� Programmability alone insufficient
� Also need higher speed
� Should network processors have

– Instructions for specific protocols?

– Instructions for specific protocol processing tasks?
� Choices difficult

CS490N  --  Chapt. 11 17 2003



Instruction Set

� Need to choose one instruction set
� No single instruction set best for all uses
� Other factors

– Power consumption

– Heat dissipation

– Cost
� More discussion later in the course
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Scalability

� Two primary techniques

– Parallelism

– Data pipelining
� Questions

– How many processors?

– How should they be interconnected?
� More discussion later
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Costs And Benefits Of Network Processors

� Currently

– More expensive than conventional processor

– Slower than ASIC design
� Where do network processors fit?

– Somewhere in the middle
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Where Network Processors Fit

Increasing cost

Increasing
Performance

Software
On Conventional

Processor

ASIC
Designs

Network
Processor
Designs

?

?

� Network processors: the middle ground
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Achieving Higher Speed

� What is known

– Must partition packet processing into separate functions

– To achieve highest speed, must handle each function
with separate hardware

� What is unknown

– Exactly what functions to choose

– Exactly what hardware building blocks to use

– Exactly how building blocks should be interconnected
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Variety Of Network Processors

� Economics driving a gold rush

– NPs will dramatically lower production costs for
network systems

– A good NP design potentially worth lots of $$
� Result

– Wide variety of architectural experiments

– Wild rush to try yet another variation
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An Interesting Observation

� System developed using ASICs

– High development cost ($1M)

– Lower cost to replicate
� System developed using network processors

– Lower development cost

– Higher cost to replicate
� Conclusion: amortized cost favors ASICs for most high-

volume systems
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Summary

� Third generation network systems have embedded processor
on each NIC

� Network processor is programmable chip with facilities to
process packets faster than conventional processor

� Primary motivation is economic

– Lower development cost than ASICs

– Higher processing rates than conventional processor
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Questions?



XII

The Complexity Of
Network Processor Design
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How Should A Network Processor
Be Designed?

� Depends on

– Operations network processor will perform

– Role of network processor in overall system
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Goals

� Generality

– Sufficient for all protocols

– Sufficient for all protocol processing tasks

– Sufficient for all possible networks
� High speed

– Scale to high bit rates

– Scale to high packet rates
� Elegance

– Minimality, not merely comprehensiveness
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The Key Point

A network processor is not designed to process a specific
protocol or part of a protocol. Instead, designers seek a
minimal set of instructions that are sufficient to handle an
arbitrary protocol processing task at high speed.
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Network Processor Design

� To understand network processors, consider problem to be
solved

– Protocols being implemented

– Packet processing tasks

CS490N  --  Chapt. 12 5 2003



Packet Processing Functions

� Error detection and correction
� Traffic measurement and policing
� Frame and protocol demultiplexing
� Address lookup and packet forwarding
� Segmentation, fragmentation, and reassembly
� Packet classification
� Traffic shaping
� Timing and scheduling
� Queueing
� Security: authentication and privacy
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Questions

� Does our list of functions encompass all protocol
processing?

� Which function(s) are most important to optimize?
� How do the functions map onto hardware units in a typical

network system?
� Which hardware units in a network system can be replaced

with network processors?
� What minimal set of instructions is sufficiently general to

implement all functions?
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Division Of Functionality

� Partition problem to reduce complexity
� Basic division into two parts
� Functions applied when packet arrives known as

ingress processing
� Functions applied when packet leaves known as

egress processing
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Ingress Processing

� Security and error detection
� Classification or demultiplexing
� Traffic measurement and policing
� Address lookup and packet forwarding
� Header modification and transport splicing
� Reassembly or flow termination
� Forwarding, queueing, and scheduling
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Egress Processing

� Addition of error detection codes
� Address lookup and packet forwarding
� Segmentation or fragmentation
� Traffic shaping
� Timing and scheduling
� Queueing and buffering
� Output security processing
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Illustration Of Packet Flow

Ingress Processing
� Error and security checking
� Classification or demultiplexing
� Traffic measurement and policing
� Address lookup and packet forwarding
� Header modification and transport splicing
� Reassembly or flow termination
� Forwarding, queueing, and scheduling

Egress Processing
� Addition of error detection codes
� Address lookup and packet forwarding
� Segmentation or fragmentation
� Traffic shaping
� Timing and scheduling
� Queueing and buffering
� Output security Processing

P
H
Y
S
I
C
A
L

I
N
T
E
R
F
A
C
E

F
A
B
R
I
C

packets
arrive

packets
leave
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A Note About Scalability

Unlike a conventional processor, scalability is essential for
network processors. To achieve maximum scalability, a
network processor offers a variety of special-purpose functional
units, allows parallel or pipelined execution, and operates in a
distributed environment.
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How Will Network Processors
Be Used?

� For ingress processing only?
� For egress processing only?
� For combination?
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How Will Network Processors
Be Used?

� For ingress processing only?
� For egress processing only?
� For combination?
� Answer: No single role
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Potential Architectural Roles
For Network Processor

� Replacement for a conventional CPU
� Augmentation of a conventional CPU
� On the input path of a network interface card
� Between a network interface card and central interconnect
� Between central interconnect and an output interface
� On the output path of a network interface card
� Attached to central interconnect like other ports
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An Interesting Potential
Role For Network Processors

In addition to replacing elements of a traditional third
generation architecture, network processors can be attached
directly to a central interconnect and used to implement stages
of a macroscopic data pipeline. The interconnect allows
forwarding among stages to be optimized.
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Conventional Processor Design

� Design an instruction set, S
� Build an emulator/simulator for S in software
� Build a compiler that translates into S
� Compile and emulate example programs
� Compare results to

– Extant processors

– Alternative designs
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Network Processor Emulation

� Can emulate low-level logic (e.g., Verilog)
� Software implementation

– Slow

– Cannot handle real packet traffic
� FPGA implementation

– Expensive and time-consuming

– Difficult to make major changes
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Network Processor Design

� Unlike conventional processor design
� No existing code base
� No prior hardware experience
� Each design differs
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Hardware And Software Design

Because a network processor includes many low-level hardware
details that require specialized software, the hardware and
software designs are codependent; software for a network
processor must be created along with the hardware.
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Summary

� Protocol processing divided into ingress and egress
operations

� Network processor design is challenging because

– Desire generality and efficiency

– No existing code base

– Software designs evolving with hardware

CS490N  --  Chapt. 12 20 2003



Questions?



XVI

Languages Used For Classification
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Languages For Building
A Network Stack

� Many questions

– What language(s) are best?

– How should processing be expressed?

– How important is efficiency?

– Must code be optimized by hand?
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Possible Programming Paradigms

� Declarative
� Imperative

– With explicit parallelism

– With implicit parallelism
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Choices Depend On

� Underlying hardware architecture
� Data and packet rates
� Software support available (e.g., compilers)
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Desiderata

� High-level
� Declarative
� Data-oriented
� Efficient
� General or extensible
� Explicit links to actions
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Possible Hardware Architectures

� RISC processor dedicated to classification
� RISC processor shared with other tasks
� Multiple, parallel RISC processors
� State machine or FPGA
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Example Classification
Languages

� We will consider two examples

– NCL

– FPL
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NCL

� Expands to Network Classification Language
� Developed by Intel
� Runs on StrongARM
� Not part of fast path
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NCL

� Network Classification Language
� Developed by Intel
� Runs on StrongARM
� Not part of fast path
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NCL Characteristics

� High level
� Mixes declarative and imperative paradigms
� Associates action with each classification
� Optimized for protocols with fixed-size header fields
� Basic unit of data is eight-bit byte

CS490N  --  Chapt. 16 9 2003



NCL Notation

� Item specified by tuple

– Offset beyond a base

– Size
� Syntax:

base [ offset : size ]
� Example

– Two-octet field fourteen octets beyond symbol FRAME

FRAME [ 14 : 2 ]
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NCL Measures Of Data Size

� Octets

– Default

– Syntax consists of integers

– Usually more efficient
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NCL Measures Of Data Size
(continued)

� Bits

– Can specify arbitrary bit position / length

– Syntax uses less-than and greater-than

– Usually less efficient

– Example of a four-bit string six bits beyond FRAME

FRAME [ <6> : <4> ]
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NCL Comments

� C-style

/* ... */
� C++-style

// ...
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NCL Primitives

� Can name header fields
� Names defined by offset / length
� No predefined protocol specifications

– NCL does not understand IP, TCP, Ethernet, etc.
� No predefined network data types

– NCL does not understand IP addresses, Ethernet
addresses, etc.
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Example NCL Code

protocol ip { /* declaration of datagram header */
vershl { ip[0:1] }
vers { ( vershl & 0xf0 ) >> 4 }
tmphl { ( vershl & 0x0f ) }
hlen { tmphl << 2 }
totlen { ip[2:2] }
ident { ip[4:2] }
frags { ip[6:2] }
ttl { ip[8:1] }
proto { ip[9:1] }
cksum { ip[10:2] }
source { ip[12:4] }
dest { ip[16:4] }

demux {
( proto == 6 ) { tcp at hlen }
( proto == 17 ) { udp at hlen }
( default ) { ipunknown at hlen }

// note: other protocol types can be added here

}
} // end of datagram header declaration
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IP Header Length

� Found in second four bits of IP header
� Gives header size in 32-bit multiples
� NCL can

– Define fields on byte boundaries

– Extract bit fields

– Perform basic arithmetic
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Example NCL Code To
Extract Header Length

vershl { ip[0:1] }
vers { ( vershl & 0xf0 ) >> 4 }
tmphl { ( vershl & 0x0f ) }
hlen { tmphl << 2 }
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Encapsulation

� Needed for layered protocols
� Type field from layer N specifies type of message

encapsulated at layer N + 1
� Specified using at keyword
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Example NCL Code
For Encapsulation

( proto == 6 ) { tcp at hlen }
( proto == 17 ) { udp at hlen }
( default ) { ipunknown at hlen }

� If IP protocol is 6, tcp
� If IP protocol is 17, icmp
� Other cases classified as ipunknown
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Actions

� Refers to imperative execution
� Names function to execute
� Associated with each classification
� Specified by rule statement

CS490N  --  Chapt. 16 20 2003



Example NCL Code
To Invoke An Action

rule web_filter { ip && tcp.dport == 80 } { web_proc(ip.src) }

� Specifies

– Name is web_filter

– Predicate is ip && tcp.dport == 80

– Action to be invoked is web_proc(ip.src)
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Intrinsic Functions

� Built into language
� Handle checksum

– Verification

– Calculation
� Understand specific protocols
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Available Intrinsic
Functions

Function Name Purpose

ip.chksumvalid Verifies validity of IP checksum
ip.genchksum Generates an IP checksum
tcp.chksumvalid Verifies validity of TCP checksum
tcp.genchksum Generates a TCP checksum
udp.chksumvalid Verifies validity of UDP checksum
udp.genchksum Generates a UDP checksum
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Named Predicates

� Bind name to predicate
� Can be used later in program
� Associated with specific protocol
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Example Predicate

predicate ip.fragmentable { ! ( (ip.frags >> 14) & 0x01 ) }
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Conditional Rule Execution

� Specifies order for predicate testing
� Linearizes classification
� Helps optimize processing
� Example use: verify IP checksum before proceeding
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Illustration Of NCP
Conditional Rule Execution

predicate TCPvalid { tcp && tcp.cksumvalid }

with { ( TCPvalid ) {

predicate SynFound { (tcp.flags & 0x02) }

rule NewConnection { SynFound } { start_conn(tcp_dport ) }

}
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Incremental Protocol Definition

� Allows programmer to add definition of field to pre-existing
protocol specification

� Works well with included files
� Useful when generic definition insufficient
� General form:

field protocol_name.field_name { definition }

� Example

field ip.flags { ip[6 : <3>] }
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NCL Set Facility

� Table search mechanism
� Tables grow dynamically
� Up to seven keys (each key is 32-bits)
� Programmer gives table size

– Size must be power of two

– Set can grow larger than estimate
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Example NCL Set Declaration

� To declare set my_addrs:

set my_addrs /* define a set of IP addresses */

< 1 > { /* number of keys in each entry */

size_hint { 256 }

}
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Example NCL Set Declaration
(continued)

� To search my_addrs:

search my_addrs.ip_src_lookup

(ip.source) /* search key is IP source addr. */
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NCL Preprocessor

� Adopts syntax from C-preprocessor
� Provides

– #include

– #ifndef
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FPL

� Functional Programming Language
� Developed by Agere Systems
� Runs on Agere FPP
� In the fast path
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FPL

� Functional Programming Language
� Developed by Agere Systems
� Runs on Agere FPP
� In the fast path
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FPL Characteristics

� High level
� Unusual, declarative language
� Follows pattern paradigm
� Designed for networking
� Differs from conventional syntactic pattern languages like

SNOBOL or Awk
� Permits parallel evaluation
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FPL Syntax

� C++ comments // I can’t understand this...
� C-like preprocessor (#define)
� Variety of constants

– Decimal

– Hexadecimal (begins with 0x)

– Bit string (begins with 0b)

– Dotted decimal IP addresses

– Dashed hexadecimal addresses
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Two Pass Processing

� Fundamental idea in FPL
� Program contains two independent parts
� Incoming data processed by both parts
� Motivation: underlying interface hardware
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Interface Hardware

� Divides each incoming packet into blocks of 64 octets
� Transfers one block at a time to FPP chip
� Sends additional information with each block

– Port number on which received

– Flags

* Hardware detected error (e.g., invalid CRC)

* Block is the first block of packet

* Block is the final block of packet
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Pass 1 Processing
(blocks)

� Program invoked once for each block
� Accommodates blocks from multiple interfaces
� Collects the blocks for each packet into a separate queue
� Forwards complete queue to Pass 2 when

– Final block of packet arrives

– Error detected and processing aborted
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Collecting Blocks

� Blocks arrive asynchronously

– From arbitrary port

– In arbitrary order
� Typical trick: use incoming port number as queue ID
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Pass 2 Processing
(packets)

� Program invoked once for each packet
� Handles complete packet
� Receives

– Packet from Pass 1

– Status information for the packet
� Chooses disposition

– Forward packet for transmission

– Discard packet
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Illustration Of FPL Processing

..............................

first
pass

processing

second
pass

processing

queue engine and memory

FPL program

block enqueued complete packet
sent back

block
arrives

packet
leaves

� Every FPL program contains code for two passes
� Status information kept with packet
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FPL Invocation

� Handled by hardware
� Pass 1 invoked when block arrives
� Pass 2 invoked when packet ready
� No explicit polling
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Designating Passes

� Programmer specifies starting label for each pass
� Handled by language directives
� To designate first pass:

SETUP ROOT( starting_label )
� To designate second pass:

SETUP REPLAYROOT( starting_label )
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Using A Pattern Match
For Conditional Processing

� Fact 1: FPL does not provide a conditional statement
� Fact 2: FPL does provide matching among a set of patterns
� Trick: use pattern selection to emulate conditional execution
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Example Conditional In
First Pass Processing

� Hardware sets variable $FramerEOF

– Value is 1 if block is final block of packet

– Value is 0 for other blocks
� Built-in functions used to enqueue block

– fQueue adds block to queue

– fQueueEOF adds block to queue and marks queue ready
for second pass
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Example Conditional In
First Pass Processing

(continued)

� Conceptual algorithm for enqueuing a block:

if ( $FramerEOF ) {
fQueueEOF( );

} else {
fQueue( );

}
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Pattern Used For Conditional

#include "fpp.fpl"

// Code for the first pass of a program that handles Ethernet packets

SETUP ROOT(HandleBlock);

// Pass 1

HandleBlock: EtherBlock($framerEOF:1);

EtherBlock: 0b0 fQueue(0:2, $portNumber:16, $offset:6, 0:1, 0:2);

EtherBlock: 0b1 fQueueEof(0:2, $portNumber:16, $offset:6, 0:1, 0:2, 0:24);
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Code For Second Pass

// Code for the second pass of a program that classifies Ethernet frames

// Symbolic constants used for classifications

#define FRAMETYPEA 1 // ARP frames
#define FRAMETYPEI 2 // IP frames
#define FRAMETYPEO 3 // Other frames (not the above)

SETUP REPLAYROOT(HandleFrame);

// Pass 2

HandleFrame:
fSkip(96) // skip past dest & src addresses
cl = CLASS // compute class from frame type
fSkipToEnd()
fTransmit(cl:21, 0:16, 0:5, 0:6);

CLASS: 0x0806:16 fReturn(FRAMETYPEA);
CLASS: 0x0800:16 fReturn(FRAMETYPEI);
CLASS: BITS:16 fReturn(FRAMETYPEO);
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Conceptual Pattern Match

� Program specifies sequence of patterns
� Pointer moves through packet
� Processing proceeds if bits in packet match pattern
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Two Basic Types Of
Pattern Functions

� Control function

– Sequence of items to match

– Processed in order

– Exactly one path
� Tree function

– Set of patterns

– Data in packet compared to all patterns

– Exactly one must match
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Example Control Function

HandleFrame:

fSkip(96) // skip past dest & src addresses

cl = CLASS // compute class from frame type

fSkipToEnd()

fTransmit(cl:21, 0:16, 0:5, 0:6);
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Example Tree Function

CLASS:0x0806:16 fReturn(FRAMETYPEA);

CLASS:0x0800:16 fReturn(FRAMETYPEI);

CLASS:BITS:16 fReturn(FRAMETYPEO);
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Special Patterns

� fSkip

– Skips bits in input
� fSkipToEnd

– Skips to end of current packet
� fTransmit

– Sends packet to RSP chip
� BITS

– Matches arbitrary bits (default case)

� Note: second pass must match entire packet
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Pattern Optimization

� FPL compiler optimizes patterns
� Typical optimization: eliminate common prefix
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Example Pattern Optimization

IP: 0x4 0x5 fSkip(152) fReturn(IPOPTIONS0);
IP: 0x4 0x6 fSkip(160) fReturn(IPOPTIONS1);
IP: 0x4 0x7 fSkip(168) fReturn(IPOPTIONS2);
IP: 0x4 BITS:4 fReturn(IPUNKNOWN);

(a)

IP: 0x4 IPHDR;
IPHDR: 0x5 fSkip(152) fReturn(IPOPTIONS0);
IPHDR: 0x6 fSkip(160) fReturn(IPOPTIONS1);
IPHDR: 0x7 fSkip(168) fReturn(IPOPTIONS2);
IPHDR: BITS:4 fReturn(IPUNKNOWN);

(b)
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IP Address Example

ipAddrMatch: *.*.*.* fReturn(0);
ipAddrMatch: 10.*.*.* fReturn(1);
ipAddrMatch: 128.10.*.* fReturn(2);
ipAddrMatch: 128.211.*.* fReturn(2);
ipAddrMatch: 128.210.*.* fReturn(3);
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FPL Variables

Variable Pass Meaning

$framerSOF 1 Is the current block the first of a frame?
$ferr 1 Did the hardware framer detect an error?
$portNumber 1 Port number from which block arrived
$framerEOF 1 Is the current block the last of a frame?
$offset 1 or 2 Offset of data within a buffer
$currOffset 1 or 2 Current byte position being matched
$currLength 1 or 2 Length of item being processed
$pass 1 or 2 Pass being executed
$tag 1 or 2 Status value sent from pass 1 to pass 2
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Dynamic Classification

� Can extend tree function at run-time
� Requires use of ASI
� Pattern converted to internal form
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Summary

� Programming languages for classification are

– Special-purpose

– High-level

– Declarative

– Data-oriented

– Provide links to actions
� We examined two languages

– NCL, the Network Classification Language from Intel

– FPL, the Functional Programming Language from Agere
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Questions?



XVII

Design Tradeoffs And Consequences
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Low Development Cost
Vs.

Performance
� The fundamental economic motivation
� ASIC costs $1M to develop
� Network processor costs programmer time
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Programmability
Vs.

Processing Speed
� Programmable hardware is slower
� Flexibility costs...
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Speed
Vs.

Functionality
� Generic idea:

– Processor with most functionality is slowest

– Adding functionality to NP lowers its overall ‘‘speed’’
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Speed

� Difficult to define
� Can include

– Packet Rate

– Data Rate

– Burst size
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Per-Interface Rates
Vs.

Aggregate Rates
� Per-interface rate important if

– Physical connections form bottleneck

– System scales by having faster interfaces
� Aggregate rate important if

– Fabric forms bottleneck

– System scales by having more interfaces
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Increasing Processing Speed
Vs.

Increasing Bandwidth

Will network processor capabilities or the bandwidth of
network connections increase more rapidly?

� What is the effect of more transistors?
� Does Moore’s Law apply to bandwidth?
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Lookaside Coprocessors
Vs.

Flow-Through Coprocessors
� Flow-through pipeline

– Operates at wire speed

– Difficult to change
� Lookaside

– Modular and easy to change

– Invocation can be bottleneck
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Uniform Pipeline
Vs.

Synchronized Pipeline
� Uniform pipeline

– Operates in lock-step like assembly line

– Each stage must finish in exactly the same time
� Synchronized pipeline

– Buffers allow computation at each stage to differ

– Synchronization expensive
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Explicit Parallelism
Vs.

Cost And Programmability
� Explicit parallelism

– Hardware is less complex

– More difficult to program
� Implicit parallelism

– Easier to program

– Slightly lower performance
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Parallelism
Vs.

Strict Packet Ordering
� Increased parallelism

– Improves performance

– Results in out-of-order packets
� Strict packet ordering

– Aids protocols such as TCP

– Can nullify use of parallelism
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Stateful Classification
Vs.

High-Speed Parallel Classification
� Static classification

– Keeps no state

– Is the fastest
� Dynamic classification

– Keeps state

– Requires synchronization for updates
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Memory Speed
Vs.

Programmability
� Separate memory banks

– Allow parallel accesses

– Yield high performance

– Difficult to program
� Non-banked memory

– Easier to program

– Lower performance
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I/O Performance
Vs.

Pin Count
� Bus width

– Increase to produce higher throughput

– Decrease to take fewer pins
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Programming Languages

� A three-way tradeoff
� Can have two, but not three of

– Ease of programming

– Functionality

– Performance
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Programming Languages That
Offer High Functionality

� Ease of programming vs. speed

– High-level language offers ease of programming, but
lower performance

– Low-level language offers higher performance, but
makes programming more difficult
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Programming Languages That
Offer Ease Of Programming

� Speed vs. functionality

– For restricted language, compiler can generate optimized
code

– Broad functionality and ease of programming lead to
inefficient code

CS490N  --  Chapt. 17 17 2003



Programming Languages That
Offer High Performance

� Ease of programming vs. functionality

– Optimizing compiler and ease of programming imply a
restricted application

– Optimizing code for general applications requires more
programmer effort
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Multithreading:
Throughput

Vs.
Ease Of Programming

� Multiple threads of control can increase throughput
� Planning the operation of threads that exhibit less contention

requires more programmer effort
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Traffic Management
Vs.

High-Speed Forwarding
� Traffic management

– Can manage traffic on multiple, independent flows

– Requires extra processing
� Blind forwarding

– Performed at highest speed

– Does not distinguish among flows
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Generality
Vs.

Specific Architectural Role
� General-purpose network processor

– Used in any part of any system

– Used with any protocol

– More expensive
� Special-purpose network processor

– Restricted to one role / protocol

– Less expensive, but may need many types
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Special-Purpose Memory
Vs.

General-Purpose Memory
� General-purpose memory

– Single type of memory serves all needs

– May not be optimal for any use
� Special-purpose memory

– Optimized for one use

– May require multiple memory types
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Backward Compatibility
Vs.

Architectural Advances
� Backward compatibility

– Keeps same instruction set through multiple versions

– May not provide maximal performance
� Architectural advances

– Allows more optimizations

– Difficult for programmers
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Parallelism
Vs.

Pipelining
� Both are fundamental performance techniques
� Usually used in combination: pipeline of parallel processors

– How long is pipeline?

– How much parallelism at each stage?
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Summary

� Many design tradeoffs
� No easy answers
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Questions?



XVIII

Overview Of The Intel Network Processor
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An Example Network Processor

� We will

– Choose one example

– Examine the hardware

– Gain first-hand experience with software
� The choice: Intel
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Intel Network Processor Terminology

� Intel Exchange Architecture ( IXA )

– Broad reference to architecture

– Both hardware and software

– Control plane and data plane
� Intel Exchange Processor ( IXP )

– Network processor that implements IXA

CS490N  --  Chapt. 18 3 2003



Intel IXP1200

� Name of first generation IXP chip
� Four models available

Model Pin Support Support Possible Clock

Number Count For CRC For ECC Rates (in MHz)

IXP1200 432 no no 166, 200, or 232

IXP1240 432 yes no 166, 200, or 232

IXP1250 520 yes yes 166, 200, or 232

IXP1250 520 yes yes 166 only

� Differences in speed, power consumption, packaging
� Term IXP1200 refers to any model
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IXP1200 Features

� One embedded RISC processor
� Six programmable packet processors
� Multiple, independent onboard buses
� Processor synchronization mechanisms
� Small amount of onboard memory
� One low-speed serial line interface
� Multiple interfaces for external memories
� Multiple interfaces for external I/O buses
� A coprocessor for hash computation
� Other functional units
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IXP1200 External Connections

IXP1200
chip

SRAM

FLASH

Memory
Mapped

I/O

SDRAM

serial
line

PCI bus

IX bus

SRAM
bus

SDRAM
bus

optional host connection

High-speed I/O bus
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IXP1200 External Connection Speeds

Type Bus Width Clock Rate Data Rate

Serial line (NA) (NA) 38.4 Kbps
PCI bus 32 bits 33-66 MHz 2.2 Gbps
IX bus 64 bits 66-104 MHz 4.4 Gbps
SDRAM bus 64 bits ≤ 232 MHz 928.0 MBps
SRAM bus 16 or 32 bits ≤ 232 MHz 464.0 MBps

� Note: MBps abbreviates Mega Bytes per second
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IXP1200 Internal Units

Quantity Component Purpose

1 Embedded RISC processor Control, higher layer protocols,
and exceptions

6 Packet processing engines I/O and basic packet processing
1 SRAM access unit Coordinate access to the

external SRAM bus
1 SDRAM access unit Coordinate access to the

external SDRAM bus
1 IX bus access unit Coordinate access to the

external IX bus
1 PCI bus access unit Coordinate access to the

external PCI bus
several Onboard buses Internal control and data transfer
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IXP1200 Internal Architecture

IXP1200 chip

SRAM

FLASH

Memory
Mapped

I/O

SDRAM SDRAM
access

SRAM
access

scratch
memory

Embedded
RISC

processor
(StrongARM)

Microengine 1

Microengine 2

Microengine 3

Microengine 4

Microengine 5

Microengine 6

PCI access

IX access

serial
line

PCI bus

IX bus

SRAM
bus

SDRAM
bus

multiple,
independent

internal
buses

optional host connection

High-speed I/O bus
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Processors On The IXP1200

Processor Type Onboard? Programmable?

General Purpose Processor no yes
Embedded RISC Processor yes yes
Microengines yes yes
Coprocessors yes no
Physical Interfaces no no
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IXP1200 Memory Hierarchy

Memory Maximum On Typical
Type Size Chip? Use

GP Registers 128 regs. yes Intermediate computation
Inst. Cache 16 Kbytes yes Recently used instructions
Data Cache 8 Kbytes yes Recently used data
Mini Cache 512 bytes yes Data that is reused once
Write buffer unspecified yes Write operation buffer
Scratchpad 4 Kbytes yes IPC and synchronization
Inst. Store 64 Kbytes yes Microengine instructions
FlashROM 8 Mbytes no Bootstrap
SRAM 8 Mbytes no Tables or packet headers
SDRAM 256 Mbytes no Packet storage
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IXP1200 Memory Characteristics

Memory Addressable Relative Special
Type Data Unit (bytes) Access Time Features

Scratch 4 12 - 14 synchronization via
test-and-set and other
bit manipulation,
atomic increment

SRAM 4 16 - 20 queue manipulation,
bit manipulation,
read/write locks

SDRAM 8 32 - 40 direct transfer path
to I/O devices
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Memory Addressability

� Each memory specifies minimum addressable unit

– SRAM organized into 4-byte words

– SDRAM organized into 8-byte longwords
� Physical address refers to word or longword
� Examples

– SDRAM address 1 refers to bytes 8 through 15

– SRAM address 1 refers to bytes 4 through 7
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Example Of Complexity:
SRAM Access Unit

SRAM access unit

SRAM
pin

inter-
face

SRAM AMBA
bus

inter-
face

Flash
(Boot
ROM)

Memory
Mapped

I/O

service priority
arbitration

microengine addr.
& command queues

AMBA addr.
queuescommand

decoder
& addr.

generator

memory
& FIFO

addr

microengine data

data

buffer

AMBA

from
StrongARM

Microengine
commands

clock

signals

address

data
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Summary

� We will use Intel IXP1200 as example
� IXP1200 offers

– Embedded processor plus parallel packet processors

– Connections to external memories and buses

CS490N  --  Chapt. 18 15 2003



Questions?



XIX

Embedded RISC Processor (StrongARM Core)
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StrongARM Role

IXP1200 IXP1200IXP1200IXP1200

GPP GPP

(a) (b)

General-Purpose
Processor

Embedded
RISC

Processors

physical
interfaces

� (a) Single IXP1200
� (b) Multiple IXP1200s
� Role of StrongARM differs
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Tasks That Can Be Performed
By StrongARM

� Bootstrapping
� Exception handling
� Higher-layer protocol processing
� Interactive debugging
� Diagnostics and logging
� Memory allocation
� Application programs (if needed)
� User interface and/or interface to the GPP
� Control of packet processors
� Other administrative functions
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StrongARM Characteristics

� Reduced Instruction Set Computer (RISC)
� Thirty-two bit arithmetic
� Vector floating point provided via a coprocessor
� Byte addressable memory
� Virtual memory support
� Built-in serial port
� Facilities for a kernelized operating system
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Arithmetic

� StrongARM is configurable in two modes

– Big endian

– Little endian
� Choice made at run-time
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StrongARM Memory Organization

� Single, uniform address space
� Includes memories and devices
� Byte addressable
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StrongARM Address Space

ContentsAddress

SDRAM Bus:

SDRAM
Scratch Pad

FBI CSRs
Microengine xfer

Microengine CSRs

AMBA xfer

Reserved

System regs

Reserved

PCI Bus:

PCI memory
PCI I/O

PCI config
Local PCI config

SRAM Bus:

SlowPort
SRAM CSRs

Push/Pop cmd
Locks

BootROM

FFFF FFFF

C000 0000

B000 0000

A000 0000

9000 0000

8000 0000

4000 0000

0000 0000
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Summary

� Embedded processor on IXP1200 is StrongARM
� StrongARM addressing

– Single, uniform address space

– Includes all memories

– Byte addressable
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Questions?



XXI

Reference System And Software Development Kit
(Bridal Veil, SDK)
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Reference System

� Provided by vendor
� Targeted at potential customers
� Usually includes

– Hardware testbed

– Development software

– Download and bootstrap software

– Reference implementations
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Intel Reference Hardware

� Single-board network processor testbed
� Plugs into PCI bus on a PC
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Intel Reference Hardware
(continued)

Quantity or Size Item

1 IXP1200 network processor (232MHz)

8 Mbytes of SRAM memory

256 Mbytes of SDRAM memory

8 Mbytes of Flash ROM memory

4 10/100 Ethernet ports

1 Serial interface (console)

1 PCI bus interface

1 PMC expansion site
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Intel Reference Software

� Known as Software Development Kit (SDK)
� Runs on PC
� Includes:

Software Purpose

C compiler Compile programs for the StrongARM
MicroC compiler Compile programs for the microengines
Assembler Assemble programs for the microengines
Downloader Load software into the network processor
Monitor Communicate with the network processor and

interact with running software
Bootstrap Start the network processor running
Reference Code Example programs for the IXP1200 that show

how to implement basic functions
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Basic Paradigm

� Build software on conventional computer
� Load into reference system
� Test / measure results
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Bootstrapping Procedure

1. Powering on host causes network processor board to run boot monitor

from Flash memory

2. Device driver on host communicates across the PCI bus with boot

monitor to load operating system (Embedded Linux) and initial RAM disk

configuration into network processor’s memory

3. Host signals boot monitor to start the StrongARM

4. Operating system runs login process on serial line and starts telnet server

5. Operating systems on host and StrongARM configure PCI bus to act as

Ethernet emulator; the StrongARM uses NFS to mount two file systems,

R and W, from a server on the host
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Starting Software

1. Compile code for StrongARM and microengines

2. Create system configuration file named ixsys.config

3. Copy code and configuration file to read-only public download

directory, R

4. Run terminal emulation program on host and log onto StrongARM

5. Change to NSF-mounted directory R, and run shell script ixstart

with argument ixsys.config

6. Later, to stop the IXP1200, run ixstop script
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Summary

� Reference systems

– Provided by vendor

– Targeted at potential customers

– Usually include

* Hardware testbed

* Cross-development software

– Download and bootstrap software

– Reference implementations
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Questions?



XXII

Programming Model
(Intel ACE)
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Active Computing Element (ACE)

� Defined by Intel’s SDK
� Not part of hardware
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ACE Features

� Fundamental software building block
� Used to construct packet processing systems
� Runs on StrongARM, microengine, or host
� Handles control plane and fast or slow data path processing
� Coordinates and synchronizes with other ACEs
� Can have multiple inputs or outputs
� Can serve as part of a pipeline
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ACE Terminology

� Library ACE

– Built by Intel

– Available with SDK
� Conventional ACE

– Built by Intel customers

– Can incorporate items from Action Service Libraries
� MicroACE

– Core component runs on StrongARM

– Microblock component runs on microengine
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More Terminology

� Source microblock

– Handles ingress from I/O device
� Sink microblock

– Handles egress to I/O device
� Transform microblock

– Intermediate position in a pipeline
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Four Conceptual Parts Of An ACE

� Initialization
� Classification
� Actions associated with each classification
� Message and event management
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Output Targets And Late Binding

� ACE has set of outputs
� Each output given target name
� Outputs bound dynamically at run time
� Unbound target corresponds to packet discard
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Conceptual ACE Interconnection

process ACEingress ACE egress ACEinput
ports

output
ports

� Ingress ACE acts as source
� Process ACE acts as transform
� Egress ACE acts as sink
� Connections created at run time
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Components Of MicroACE
(review)

� Single ACE with two components

– StrongARM (core component)

– Microengines (microblock component)
� Communication possible between components

CS490N  --  Chapt. 22 9 2003



Division Of ACE Into Components

IP ACE
(microblock)

ingress ACE
(microblock)

egress ACE
(microblock)

input
ports

output
ports

ingress ACE
(core)

IP ACE
(core)

egress ACE
(core)

Stack ACE

StrongARM

microengine

� Microblocks form fast path
� Stack ACE runs entirely on StrongARM
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Microblock Group

� Set of one or more microblocks
� Treated as single unit
� Loaded onto microengine for execution
� Can be replicated on multiple microengines for higher speed
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Illustration Of Microblock Groups

ingress ACE
(microblock)

IP ACE
(microblock)

egress ACE
(microblock)

input
ports

output
ports

ingress ACE
(core)

IP ACE
(core)

egress ACE
(core)

Stack ACE

StrongARM

microengine 1 microengine 2

� Entire microblock group assigned to same microengine
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Replication Of Microblock Group

� Typically used for

– Ingress microblock group

– Egress microblock group
� Replications depend on number and speed of interfaces
� SDK software computes replications automatically
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Illustration Of Replication

ingress ACE
(microblock)

IP ACE
(microblock)

ingress ACE
(microblock)

IP ACE
(microblock)

egress ACE
(microblock)

input
ports

output
ports

microengine 1

microengine 2

microengine 3

� Ingress microblock group replicated on microengines 1 & 3
� Incoming packet taken by either copy
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Microblock Structure

� Asynchronous model
� Programmer creates

– Initialization macro

– Dispatch loop
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Dispatch Loop

� Determines disposition of each packet
� Uses return code to either

– Send packet to StrongARM

– Forward packet to ‘‘next’’ microblock

– Discard packet
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Dispatch Loop Algorithm

Allocate global registers;
Initialize dispatch loop; Initialize Ethernet devices;
Initialize ingress microblock; Initialize IP microblock;
while (1) {

Get next packet from input device(s);
Invoke ingress microblock;
if ( return code == 0 ) {

Drop the packet;
} else if ( return code == 1 ) {

Send packet to ingress core component;
} else { /* IP packet */

Invoke IP microblock;
if ( return code == 0 ) {

Drop packet;
} else if ( return code == 1 ) {

Send packet to IP core component;
} else {

Send packet to egress microblock;
}

}
}
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Arguments Passed To
Processing Macro

� A buffer handle for a frame that contains a packet
� A set of state registers

– Contain information about the frame

– Can be modified
� A variable named dl_next_block

– Used to store return code
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Packet Queues

� Placed between ACE components
� Buffer packets
� Permit asynchronous operation
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Illustration Of Packet Queues

ingress ACE
microblock

IP ACE
microblock

egress ACE
microblock

input
ports

output
ports

ingress ACE
(core)

IP ACE
(core)

egress ACE
(core)

Stack ACE

StrongARM

microengines
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Exceptions

� Packets passed from microblock to core component
� Mechanism

– Microcode sets dl_next_block to IX_EXCEPTION

– Dispatch loop forwards packet to core

– ACE tag used to identify corresponding component

– Exception handler is invoked in core component
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Possible Actions Core Component
Applies To Exception

� Consume the packet and free the buffer
� Modify the packet before sending it on
� Send the packet back to the microblock for further

processing
� Forward the packet to another ACE on the StrongARM
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Crosscall Mechanism

� Used between

– Core component of one ACE and another

– ACE core component and non-ACE application
� Not intended for packet transfer
� Operates like Remote Procedure Call (RPC)
� Mechanism known as crosscall
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Crosscall Implementation

� Both caller and callee programmed to use crosscall
� Declaration given in Interface Definition Language (IDL)
� IDL compiler

– Reads specification

– Generates stubs that handle calling details
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Crosscall Implementation
(continued)

� Three types of crosscalls

– Deferred: caller does not block; return notification
asynchronous

– Oneway: caller does not block; no value returned

– Twoway: caller blocks; callee returns a value
� Twoway call corresponds to traditional RPC
� Type of call determined at compile time
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Twoway Calling And Blocking

Because the core component of an ACE is prohibited from
blocking, an ACE cannot make a twoway call.
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Summary

� Intel SDK uses ACE programming model
� ACE

– Basic unit of computation

– Can include code for StrongARM (core) and
microengines (microblock)

� Packet queues used to pass packets between ACEs
� Crosscall mechanism used for nonpacket communication
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Questions?



XXIII

ACE Run-Time Structure
And

StrongARM Facilities
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StrongARM Responsibilities

� Loading ACE software
� Creating and initializing ACE
� Resolving names
� Managing the operation of ACEs
� Allocating and reclaiming resources (e.g., memory)
� Controlling microengine operation
� Communication among core components
� Interface to non-ACE applications
� Interface to operating system facilities
� Forwarding packets between core component and

microblock(s)
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Illustration Of ACE Components

Resource Manager
(loadable kernel module)

Action Services
Library

(loadable kernel module)

OMS

Resolver
(process)

Name
Server

(process)

Operating System
Specific Library
(shared library)

. . .

ACE core components (processes)

StrongARM
microengines

. . .

microblocks
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Components

� Object Management System

– Binds names to objects

– Contains

* Resolver

* Name server
� Resource Manager

– Access to OS

– Communication with microengines

– Memory management
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Components
(continued)

� Operating System Specific Library

– Shared library

– Provides virtual API

– Should be named OS independent library
� Action Services Library

– Loadable kernel module

– Run-time support for core component

– TCP/IP support
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Microengine Assignment

� Automated by SDK
� Programmer specifies

– Type (speed) of each port

– Type of each ACE
� SDK chooses

– Number of replications for each microblock

– Assignment of microblocks to microengines
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Type Values Used In Configuration File

� Only two port types

– Slow corresponds to 10 / 100 Ethernet

– Fast corresponds to Gigabit Ethernet

Numeric Value Meaning

0 Slow ingress file
1 Slow egress file
2 Fast ingress file for Port 1
3 Fast ingress file for Port 2
4 Fast egress file
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Pieces Of ACE Code Programmer Writes

� Initialization function called when ACE begins
� Exception handler receives packets sent by microblock
� Action functions that correspond to packet classifications
� Crosscalls ACE accepts
� Timer functions for timed events
� Callback functions for returned values
� Termination function called when the ACE terminates
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Reserved Names

� SDK software uses fixed names for some functions
� Examples

– ACE initialization function must be named ix_init

– ACE termination function must be named ix_fini
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Overall Structure Of Core Component

� Core component of ACE runs as separate Linux process
� Always the same structure
� Programmer does not write main program
� SDK supplies structure and main program
� Uses an event loop
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Conceptual Structure Of ACE Core Component

main( ) /* Core component of an ACE */
{

Intel_init( ); /* Perform internal initialization */
ix_init( ); /* Call user’s initialization function */
Intel_event_loop( ): /* Perform internal event loop */
ix_fini( ); /* Call user’s termination function */
Intel_fini( ); /* Perform internal cleanup */
exit( ); /* Terminate the Linux process */

}
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Event Loop

� Central to asynchronous programming model
� Uses polling
� Repeatedly checks for presence of event(s) and calls

appropriate handler
� Can be hidden from programmer
� In ACE model

– Explicit

– Programmer can modify / extend
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Illustration Of ACE Event Loop

Intel_event_loop( )
{

do forever {
E = getnextevent( );
if (E is termination event) {

return to caller;
} else if (E is exception event) {

call exception handler function;
} else if (E is timer event) {

call timer handler function;
/* Note: additional event tests can be added here*/
}

}
}
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A Note About Event Loops

Beware: although it may seem trivial, the event loop mechanism
has several surprising consequences for programmers.
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Event Loop Processing

� If event loop stops

– All processing stops

– The arrival of a new event will not trigger invocation of
an event handler

� Conclusion: the event loop must go on
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Asynchronous Programming, Event Loops,
Threads, And Blocking

Because each core component executes as a single thread of
control, no handler function is permitted to block because doing
so will stop the event loop and block the entire core component.
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Prohibition On Blocking Calls

� Programmer must use asynchronous call model
� Calling program specifies

– Function to invoke

– Arguments to pass

– Callback function
� Called program

– Invoked asynchronously

– Receives copy of arguments, and computes result

– Specifies callback to be invoked
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Illustration Of Asynchronous Callback (part 1)

h { /* Synchronous version */
y = f( x ); /* Call f (potentially blocking) */
z = g( y ); /* Use the result from f to call g */
q += z; /* Use the value of z to update q*/
return;

}

h1 { /* Asynchronous version */
allocate global variables y, z, and q;
establish cbf1 as the callback function for f1;
establish cbg1 as the callback function for g1;
Start f1(x) with a nonblocking call;
return;

}
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Illustration Of Asynchronous Callback (part 2)

function cbf1(retval) { /* Callback function for f1 */
y = retval;
start g1(y) with a nonblocking call;
return;

}

function cbg1(retval) { /* Callback function for g1 */
z = retval;
q += z;
return;

}
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Code Complexity

Because it uses the asynchronous paradigm, the core
component of an ACE is usually significantly more complex and
difficult to understand than a synchronous program that solves
the same problem.
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Some Good News

� ACE core component structured around event loop
� Underlying system is sequential
� No mutual exclusion needed!
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Some Good News

� ACE core component structured around event loop
� Underlying system is sequential
� No mutual exclusion needed!
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Memory Allocation

� Performed by StrongARM
� Function RmMalloc (in Resource Manager) allocates

memory
� Request must specify type of memory

– SRAM

– SDRAM

– Scratch
� Function RmGetPhysOffset maps virtual address to physical

address
� Resulting physical address passed to microblock
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Steps Taken At System Startup

� Load and start ASL kernel module, name server, and
resolver

� Load and start device drivers for the network interfaces
� Load and initialize the Resource Manager which determines

how many copies of each ingress and egress microblock
group to run

� Parse and check configuration file ixsys.config
� Start core component of each ACE, which causes ACE to

invoke ix_init function
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Steps Taken At System Startup
(continued)

� Turn on interfaces, assign microblock groups to
microengines, and resolve external references (known as
patching)

� Bind the ACE targets and physical interfaces
� Start microengines running
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ACE Data Structure

� Stores information needed by Intel SDK software
� Must be allocated by ix_init and deallocated by ix_fini
� Uses structure ix_ace
� Can be extended with data defined by programmer
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Example ACE Data Declaration

#include <ix/asl.h> /* Include Intel’s library declarations*/

structmyace { /* Programmer’s control block */

struct ix_ace ace; /* Intel’s ace embedded as first item*/

int mycount; /* Counter used by programmer’s code*/

/* Programmer can insert additional data items here... */

}
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Example Data Structure Allocation

ix_init ( ... , ix_ace **app , ... )

{

struct myace *ap; /* Ptr to programmer’s control block*/

ap = malloc ( sizeof ( struct myace ) ) ;

*app = &ap->ace ;

ix_ace_init ( &ap->ace ) ;

/* Other initialization code goes here... */

}
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Crosscall

� Uses OMS
� Three types

– Oneway: no return

– Twoway: conventional procedure call

– Deferred: asynchronous return through callback
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Possible Crosscall Communication

Caller Called Procedure Block?

ACE core component ACE core component no

ACE core component non-ACE application no

non-ACE application ACE core component no

non-ACE application non-ACE application yes
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Crosscall Declaration

� Uses Interface Definition Language (IDL)
� Declares type of

– Exported functions

– Arguments
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Example IDL Declaration

interface PacketCounter
{

struct packetinfo {
int numpackets; /* Count of total packets */
int numbcasts; /* Count of broadcast packets*/

};

oneway void incTcount ( in int addedpackets ) ;
deferred int resetTcount ( in int newnumpkts ) ;
twoway int resetPinfo ( in struct packetinfo ) ;

};
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Timer Management

� Performed on StrongARM
� Uses OMS
� Follows asynchronous model
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Using A Timer

1. Initialize H, a handle for an ix_event.

2. Associate handle H with a callback function, CB.

3. Calculate T, a time for the event to occur.

4. Schedule event H at time T.

5. At any time prior to T, event H can be cancelled.

6. At time T, function CB will be called if the event has

not been cancelled.
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Summary

� Core component of ACE

– Runs as Linux process

– Provides asynchronous API

– Uses event loop mechanism

– Includes functions named ix_init and ix_fini

– Responsible for memory allocation and timer management
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Questions?



XX

Packet Processor Hardware
(Microengines And FBI)
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Role Of Microengines

� Packet ingress from physical layer hardware
� Checksum verification
� Header processing and classification
� Packet buffering in memory
� Table lookup and forwarding
� Header modification
� Checksum computation
� Packet egress to physical layer hardware
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Microengine Characteristics

� Programmable microcontroller
� RISC design
� One hundred twenty-eight general-purpose registers
� One hundred twenty-eight transfer registers
� Hardware support for four threads and context switching
� Five-stage execution pipeline
� Control of an Arithmetic Logic Unit (ALU)
� Direct access to various functional units
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Microengine Level

� Not a typical CPU
� Does not contain native instruction for each operation
� Really a microsequencer
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Consequence Of Microsequencing

Because it functions as a microsequencer, a microengine does
not provide native hardware instructions for arithmetic
operations, nor does it provide addressing modes for direct
memory access. Instead, a program running on a microengine
controls and uses functional units on the chip to access memory
and perform operations.
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Microengine Instruction Set

Instruction Description
Arithmetic, Rotate, And Shift Instructions

Branch and Jump Instructions

Reference Instructions

Local Register Instructions

Miscellaneous Instructions

ALU
ALU_SHF
DBL_SHIFT

Perform an arithmetic operation
Perform an arithmetic operation and shift
Concatenate and shift two longwords

BR, BR=0, BR!=0, BR>0, BR>=0, BR<0,
BR<=0, BR=count, BR!=count

BR_BSET, BR_BCLR
BR=BYTE, BR!=BYTE
BR=CTX, BR!=CTX
BR_INP_STATE
BR_!SIGNAL
JUMP
RTN

Branch or branch conditional

Branch if bit set or clear
Branch if byte equal or not equal
Branch on current context
Branch on event state
Branch if signal deasserted
Jump to label
Return from branch or jump

CSR
FAST_WR
LOCAL_CSR_RD, LOCAL_CSR_WR
R_FIFO_RD
PCI_DMA
SCRATCH
SDRAM
SRAM
T_FIFO_WR

CSR reference
Write immediate data to thd_done CSRs
Read and write CSRs
Read the receive FIFO
Issue a request on the PCI bus
Scratchpad memory request
SDRAM reference
SRAM reference
Write to transmit FIFO

FIND_BST, FIND_BSET_WITH_MASK
IMMED
IMMED_B0, IMMED_B1, IMMED_B2, IMMED_B3
IMMED_W0, IMMED_W1
LD_FIELD, LD_FIELD_W_CLR
LOAD_ADDR
LOAD_BSET_RESULT1, LOAD_BSET_RESULT2

Find first 1 bit in a value
Load immediate value and sign extend
Load immediate byte to a field
Load immediate word to a field
Load byte(s) into specified field(s)
Load instruction address
Load the result of find_bset

CTX_ARB
NOP
HASH1_48, HASH2_48, HASH3_48
HASH1_64, HASH2_64, HASH3_64

Perform context swap and wake on event
Skip to next instruction
Perform 48-bit hash function 1, 2, or 3
Perform 64-bit hash function 1, 2, or 3
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Microengine View Of Memory

� Separate address spaces
� Specific instruction to reference each memory type

– Instruction sdram to access SDRAM memory

– Instruction sram to access SRAM memory

– Instruction scratch to access Scratchpad memory
� Consequence: early binding of data to memory
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Five-Stage Instruction Pipeline

Stage Description

1 Fetch the next instruction
2 Decode the instruction and get register address(es)
3 Extract the operands from registers
4 Perform ALU, shift, or compare operations and set

the condition codes
5 Write the results to the destination register
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Example Of Pipeline Execution

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

inst. 8

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

-

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

Time

� Once pipeline is started, one instruction completes per cycle
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Instruction Stall

� Occurs when operand not available
� Processor temporarily stops execution
� Reduces overall speed
� Should be avoided when possible
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Example Instruction Stall

� Consider two instructions:

K: ALU operation to add the contents of R1 to R2

K+1: ALU operation to add the contents of R2 to R3

� Second instruction cannot access R2 until value has been
written

� Stall occurs
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Effect Of Instruction Stall

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. K

inst. K+1

inst. K+2

inst. K+3

inst. K+3

inst. K+3

inst. K+4

inst. K+5

inst. K-1

inst. K

inst. K+1

inst. K+2

inst. K+2

inst. K+2

inst. K+3

inst. K+4

inst. K-2

inst. K-1

inst. K

inst. K+1

inst. K+1

inst. K+1

inst. K+2

inst. K+3

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

inst. K+2

inst. K-4

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

Time

� Bubble develops in pipeline
� Bubble eventually reaches final stage
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Sources Of Delay

� Access to result of previous / earlier operation
� Conditional branch
� Memory access
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Memory Access Delays

Type Of Approximate Access Time
Memory (in clock cycles)

Scratchpad 12 - 14
SRAM 16 - 20
SDRAM 32 - 40

� Delay is surprisingly large
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Threads Of Execution

� Technique used to speed processing
� Multiple threads of execution remain ready to run
� Program defines threads and informs processor
� Processor runs one thread at a time
� Processor automatically switches context to another thread

when current thread blocks
� Known as hardware threads
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Illustration Of Hardware Threads

thread 1

thread 2

thread 3

thread 4

time t1 time t2 time t3

time

context switch

� White - ready but idle
� Blue - being executed by microengine
� Gray - blocked (e.g., during memory access)

CS490N  --  Chapt. 20 16 2003



The Point Of Hardware Threads

Hardware threads increase overall throughput by allowing a
microengine to handle up to four packets concurrently; with
threads, computation can proceed without waiting for memory
access.
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Context Switching Time

� Low-overhead context switch means one instruction delay as
hardware switches from one thread to another

� Zero-overhead context switch means no delay during context
switch

� IXP1200 offers zero-overhead context switch
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Microengine Instruction Store

� Private instruction store per microengine
� Advantage: no contention
� Disadvantage: small (1024 instructions)
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General-Purpose Registers

� One hundred twenty-eight per microengine
� Thirty-two bits each
� Used for computation or intermediate values
� Divided into banks
� Context-relative or absolute addresses
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Forms Of Addressing

� Absolute

– Entire set available

– Uses integer from 0 to 127
� Context-relative

– One quarter of set available to each thread

– Uses integer from 0 to 31

– Allows same code to run on multiple microengines
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Register Banks

� Mechanism commonly used with RISC processor
� Registers divided into A bank and B bank
� Maximum performance achieved when each instruction

references a register from the A bank and a register from the
B bank
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Summary Of General-Purpose Registers

context 3 (16 regs.)

context 2 (16 regs.)

context 1 (16 regs.)

context 0 (16 regs.)

context 3 (16 regs.)

context 2 (16 regs.)

context 1 (16 regs.)

context 0 (16 regs.)

0 - 15

0 - 15

0 - 15

0 - 15

0 - 15

0 - 15

0 - 15

0 - 15

48 - 63

32 - 47

16 - 31

0 - 15

48 - 63

32 - 47

16 - 31

0 - 15

A bank
(64 regs.)

B bank
(64 regs.)

used byabsolute addr. relative addr.

� Note: half of the registers for each context are from A bank
and half from B bank
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Transfer Registers

� Used to buffer external memory transfers
� Example: read a value from memory

– Copy value from memory into transfer register

– Move value from transfer register into general-purpose
register

� One hundred twenty-eight per microengine
� Divided into four types

– SRAM or SDRAM

– Read or write
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Transfer Register Addresses

context 3 ( 8 regs. )

context 2 ( 8 regs. )

context 1 ( 8 regs. )

context 0 ( 8 regs. )

context 3 ( 8 regs. )

context 2 ( 8 regs. )

context 1 ( 8 regs. )

context 0 ( 8 regs. )

context 3 ( 8 regs. )

context 2 ( 8 regs. )

context 1 ( 8 regs. )

context 0 ( 8 regs. )

context 3 ( 8 regs. )

context 2 ( 8 regs. )

context 1 ( 8 regs. )

context 0 ( 8 regs. )

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

0 - 7

24 - 31

16 - 23

8 - 15

0 - 7

24 - 31

16 - 23

8 - 15

0 - 7

24 - 31

16 - 23

8 - 15

0 - 7

24 - 31

16 - 23

8 - 15

0 - 7

SDRAM read
( 32 regs. )

SDRAM write
( 32 regs. )

SRAM read
( 32 regs. )

SRAM write
( 32 regs. )

used byabsolute addr. relative addr.
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Local Control And Status Registers

� Used to interrogate or control the IXP1200
� All mapped into StrongARM address space
� Microengine can only access its own local CSRs
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Local CSRs

Local CSR Purpose

USTORE_ADDRESS Load the microengine control store
USTORE_DATA Load a value into the control store
ALU_OUTPUT Debugging: allows StrongARM to read

GPRs and transfer registers
ACTIVE_CTX_STS Determine context status
ENABLE_SRAM_JOURNALING Debugging: place journal in SRAM
CTX_ARB_CTL Context arbiter control
CTX_ENABLES Debugging: enable a context
CC_ENABLE Enable condition codes
CTX_n_STS Determine context status
CTX_n_SIG_EVENTS Determine signal status
CTX_n_WAKEUP_EVENTS Determine which wakeup events

are currently enabled

Note: n is digit from 0 through 3 (hardware contains a separate
CSR for each of the four contexts).
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Interprocessor Communication Mechanisms

� Thread-to-StrongARM communication

– Interrupt

– Signal event
� Thread-to-thread communication within one IXP1200

– Signal event
� Thread-to-thread communication across multiple IXP1200s

– Ready bus
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FBI Unit

� Interface between processors and other functional units

– Scratchpad memory

– Hash unit

– FBI control and status registers

– Control and operation of the Ready bus

– Control and operation of the IX bus

– Data buffers that hold data arriving from the IX bus

– Data buffers that hold data sent to the IX bus
� Operates like DMA controller
� Uses FIFOs
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FIFOs

� Hardware buffers
� Transfer performed in 64 byte blocks
� Misleading name: access is random
� Only path between external device and microengine
� Receive FIFO (RFIFO)

– Handles input

– Physical interface moves data to RFIFO

– FBI moves data from RFIFO to memory
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FIFOs
(continued)

� Transmit FIFO (TFIFO)

– Handles output

– FBI moves data from memory to TFIFO

– Physical interface extracts data from TFIFO
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A Note About FIFO Transfer

It is possible for a microengine to transfer data to or from a
FIFO without going to memory.
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FBI

� Initiates and controls data transfer
� Contains active components

– Push engine

– Pull engine
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FBI Architecture (simplified)

TFIFO

RFIFO

Pull Engine

Push Engine

CSRs

Scratch

Hash8-entry
(push)

8-entry
(pull)

command queues

8-entry
(hash)

data from
SRAM transfer

registers

data to
SRAM transfer

registers

commands from
microengine

command bus

commands arrive

data enters

commands arrive

data leaves
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ScratchPad Memory

� Organized into 1K words of 4 bytes each
� Offers special facilities

– Test-and-set of individual bits

– Autoincrement (low latency)
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Hash Unit

� Configurable coprocessor
� Operates asynchronously
� Intended for table lookup when multiplication or division

required (ALU does not have multiply instruction)
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Hash Unit Computation

� Computes quotient Q(x) and remainder R(x):

A(x) ∗ M(x) / G(x) → Q(x) + R(x)

� A(x) is input value
� M(x) is hash multiplier (configurable)
� G(x) is built-in value
� Two values for G — one for 48-bit hash, one for 64-bit

hash

CS490N  --  Chapt. 20 37 2003



Hash Mathematics

� Integer value interpreted as polynomial over field [0,1]
� Example:

2040116

� Is interpreted as

x17 + x10 + 1

� Similarly, value G(x) used in 48-bit hash

100100200040116

� Is interpreted as

x48 + x36 + x25 + x10 + 1
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Hash Example

A = 80000000000116 ( x47 + 1 )

G = 100100200040116 ( x48 + x36 + x25 + x10 + 1 )

M = 20D16 ( x9 + x3 + x2 + 1 )

� Hash computes R, remainder of M times A divided by G

H(X) = R = M ∗ A % G
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Hash Example
(continued)

� Multiplying yields

M ∗ A = x56 + x50 + x49 + x47 + x9 + x3 + x2 + 1

� Furthermore

M ∗ A = Q ∗ G + R
� Where

Q = x8 + x2 + x1
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Hash Example
(continued)

� So, Q is:

10616

� And R is:

x47 + x44 + x38 + x37 + x33 + x27 + x26 + x18 + x12 +

x11 + x9 + x8 + x3 + x1 + 1

� The hash unit returns R as the value of the computation:

90620C041B0B16

CS490N  --  Chapt. 20 41 2003



Other IXP1200 Hardware

� The IXP1200 contains over 1500 registers used for

– Configuration and bootstrapping

– Control of functional units and buses

– Checking status of processors, threads, and onboard
functional units

� Example: IX bus registers used to

– Control bus operation

– Configure the bus for 64-bit or 32-bit mode operation

– Control devices attached to the bus

– Specify whether a MAC device or the IXP handles
control signals
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Summary

� Microengines

– Low-level, programmable packet processors

– Use RISC design with instruction pipeline

– Have hardware threads for higher throughput

– Use transfer registers to access memory

– Use FIFOs for I/O

– Do not have multiply, but have access to hash unit
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Questions?



XXIV

Microengine Programming I
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Microengine Code

� Many low-level details
� Close to hardware
� Written in assembly language
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Features Of Intel’s Microengine Assembler

� Directives to control assembly
� Symbolic register names
� Macro preprocessor (extension of C preprocessor)
� Set of structured programming macros
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Statement Syntax

� General form:

label: operator operands token

� Interpretation of token depends on instruction
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Comment Statements

� Three styles available

– C style (between /* and */ )

– C++ style ( // until end of line )

– Traditional assembly style ( ; until end of line )
� Only traditional comments remain in code for intermediate

steps of assembly
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Assembler Directives

� Begin with period in column one
� Can

– Generate code

– Control assembly process
� Example: associate myname with register five in the A

register bank

.areg myname 5
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Example Operand Syntax

� Instruction alu invokes the ALU

alu [ dst, src1, op, src2 ]

� Four operands

– Destination register

– First source register

– Operation

– Second source register
� Two minus signs ( – – ) can be specified for destination, if

none needed
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Memory Operations

� Programmer specifies

– Type of memory

– Direction of transfer

– Address in memory (two registers used)

– Starting transfer register

– Count of words to transfer

– Optional token
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Memory Operations
(continued)

� General forms

sram [ direction, xfer_reg, addr1, addr2, count ], optional_token

sdram [ direction, xfer_reg, addr1, addr2, count ], optional_token

scratch [ direction, xfer_reg, addr1, addr2, count ], optional_token
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Memory Addressing

� Specified with operands addr1 and addr2
� Each operand corresponds to register
� Use of two operands allows

– Base + offset

– Scaling to large memory
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Immediate Instruction

� Place constant in thirty-two bit register

immed [ dst, ival, rot ]

� Upper sixteen bits of ival must be all zeros or all ones
� Operand rot specifies bit rotation

0 No rotation

<< 0 No rotation (same as 0)

<< 8 Rotate to the left by eight bits

<< 16 Rotate to the left by sixteen bits
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Register Names

� Usually automated by assembler
� Directives available for manual assignment

Directive Type Of Register Assigned

.areg General-purpose register from the A bank

.breg General-purpose register from the B bank

.$reg SRAM transfer register

.$$reg SDRAM transfer register
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Automated Register Assignment

� Programmer

– Uses .local directive to declare register names

– Uses .endlocal to terminate scope

– References names in instructions
� Assembler

– Assigns registers

– Chooses bank for each register

– Replaces names in code with correct reference
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Illustration Of Automated Register Naming

� One or more register names specified on .local
� Example

.local myreg loopctr tot

.endlocal

.

.

.

code in this block can use
registers myreg, loopctr, and tot

� Names valid only within scope
� Scopes can be nested
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Illustration Of Nested Register Scope

.local myreg loopctr

.endlocal

.local rone rtwo

.endlocal

.local rthree rfour

.endlocal

.

.

.

.

.

.

outer scope that defines registers
myreg and loopctr

nested scope that defines registers
rone and rtwo

nested scope that defines registers
rthree and rfour
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Conflicts

� Operands must come from separate banks
� Some code sequences cause conflict
� Example:

Z ← Q + R;
Y ← R + S;
X ← Q + S;

� No assignment is valid
� Programmer must change code
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Macro Preprocessor Features

� File inclusion
� Symbolic constant substitution
� Conditional assembly
� Parameterized macro expansion
� Arithmetic expression evaluation
� Iterative generation of code
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Macro Preprocessor Statements

Keyword Use

#include Include a file
#define Define symbolic constant
#define_eval Eval arithmetic expression & define constant
#undef Remove previous definition
#macro Start macro definition
#endm End a macro definition

#ifdef Start conditional compilation if defined
#ifndef Start conditional compilation if not defined
#if Start conditional compilation if expr. true
#else Else part of conditional compilation
#elif Else if part of conditional compilation
#endif End of conditional compilation

#for Start definite iteration
#while Start indefinite iteration
#repeat Start indefinite iteration (test after)
#endloop Terminate an iteration
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Macro Definition

� Can occur at any point in program
� General form:

#macro name [ parameter1 , parameter2 , . . . ]
lines of text

#endm
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Macro Example

� Compute a = b + c + 5

/* example macro add5 computes a=b+c+5 */
#macro add5[a, b, c]

.local tmp
alu[tmp, c, +, 5]
alu[a, b, +, tmp]

.endlocal
#endm

� Assumes values a, b, and c in registers
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Macro Expansion Example

� Call of add5[var1, var2, var3] expands to:

.local tmp
alu[tmp, var3, +, 5]
alu[var1, var2, +, tmp]

.endlocal

� Warning: can generate illegal code
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Generation Of Repeated Code

� Macro preprocessor

– Supports #while statement for iteration

– Uses #define_eval for arithmetic evaluation
� Can be used to generate repeated code
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Example Of Repeated Code

� Preprocessor code:

#define LOOP 1
#while (LOOP < 4)

alu_shf[reg, -, B, reg, >>LOOP]
#define_eval LOOP LOOP + 1
#endloop

� Expands to:

alu_shf[reg, -, B, reg, >>1]
alu_shf[reg, -, B, reg, >>2]
alu_shf[reg, -, B, reg, >>3]
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Structured Programming Directives

� Make code appear to follow structured programming
conventions

� Include break statement al la C

Directive Meaning

.if Conditional execution

.elif Terminate previous conditional execution and
start a new conditional execution

.else Terminate previous conditional execution and
define an alternative

.endif End .if conditional

.while Indefinite iteration with test before

.endw End .while loop

.repeat Indefinite iteration with test after

.until End .repeat loop

.break Leave a loop

.continue Skip to next iteration of loop
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Mechanisms For Context Switching

� Context switching is voluntary
� Thread can execute:

– ctx_arb instruction

– Reference instruction (e.g., memory reference)
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Argument To ctx_arb Instruction

� Determines disposition of thread

– voluntary: thread suspended until later

– signal_event: thread suspended until specified event
occurs

– kill: thread terminated
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Context Switch On Reference Instruction

� Token added to instruction to control context switch
� Two possible values

– ctx_swap: thread suspended until operation completes

– sig_done: thread continues to run, and signal posted
when operation completes

� Signals available for SRAM, SDRAM, FBI, PCI, etc.
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Indirect Reference

� Poor choice of name
� Hardware optimization
� Found on other RISC processors
� Result of one instruction modifies next instruction
� Avoids stalls
� Typical use

– Compute N, a count of words to read from memory

– Modify memory access instruction to read N words
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Fields That Can Be Modified

� Microengine associated with a memory reference
� Starting transfer register
� Count of words of memory to transfer
� Thread ID of the hardware thread (i.e., thread to signal

upon completion)
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How Indirect Reference Operates

� Programmer codes two instructions

– ALU operation

– Instruction with indirect reference set
� Note: destination of ALU operation is – – (i.e., no

destination)
� Hardware

– Executes ALU instruction

– Uses result of ALU instruction to modify field in next
instruction
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Example Of Indirect Reference

� Example code

alu_shf [ – –, – –, b, 0x13, << 16 ]
scratch [ read, $reg0, addr1, addr2, 0 ], indirect_ref

� Memory instruction coded with count of zero
� ALU instruction computes count
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External Transfers

� Microengine cannot directly access

– Memory

– Buses ( I/O devices )
� Intermediate hardware units used

– Known as transfer registers

– Multiple registers can be used as large, contiguous buffer
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External Transfer Procedure

� Allocate contiguous set of transfer registers to hold data
� Start reference instruction that moves data to or from

allocated registers
� Arrange for thread to wait until the operation completes
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Allocating Contiguous Registers

� Registers assigned by assembler
� Programmer needs to ensure transfer registers contiguous
� Assembler provides .xfer_order directive
� Example: allocate four continuous SRAM transfer registers

.local $reg1 $reg2 $reg3 $reg4

.xfer_order $reg1 $reg2 $reg3 $reg4
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Summary

� Microengines programmed in assembly language
� Intel’s assembler provides

– Directives for structuring code

– Macro preprocessor

– Automated register assignment
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Questions?



XXV

Microengine Programming II
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Specialized Memory Operations

� Buffer pool manipulation
� Processor coordination via bit testing
� Atomic memory increment
� Processor coordination via memory locking
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Buffer Pool Manipulation

� SRAM facility
� Eight linked lists
� Operations push and pop
� General form of pop

sram [ pop, $xfer, – –, – –, listnum ]
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Processor Coordination
Via Bit Testing

� Provided by SRAM and Scratchpad memories
� Atomic test-and-set
� Mask used to specify bit in a word
� General form

scratch [ bit_wr, $xfer, addr1, addr2, op ]
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Bit Manipulation Operations

Operation Meaning

set_bits Set the specified bits to one

clear_bits Set the specified bits to zero

test_and_set_bits Place the original word in the read transfer

register, and set the specified bits to one

test_and_clear_bits Place the original word in the read transfer

register, and set the specified bits to zero
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Atomic Memory Increment

� Memory shared among

– StrongARM

– Microengines
� Need atomic increment to avoid incorrect results
� General form

scratch [ incr, – –, addr1, addr2, 1 ]
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Processor Coordination
Via Memory Locking

� Word of memory acts as mutual exclusion lock
� Achieved with memory lock instruction
� Single read_lock instruction

– Obtains a lock on location X in memory

– Reads values starting at location X
� Single write_unlock instruction

– Writes values to memory

– Unlocks the specified location
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Processor Coordination
Via Memory Locking

(continued)

� General form of read_lock

sram [ read_lock, $xfer, addr1, addr2, count ], ctx_swap

� Token ctx_swap required (thread blocks until lock obtained)
� General form of write_unlock

sram [ unlock, – –, addr1, addr2, 1 ]
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Implementation Of Memory Locking

� Achieved with a CAM that holds eight items
� Only releases contiguous items in CAM
� Consequences

– At most eight addresses can be locked at any time

– Thread can remained blocked even if its request can be
satisfied
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Control And Status Registers

� Over one hundred fifty
� Provide access to hardware units on the chip
� Allow processors to

– Configure

– Control

– Interrogate

– Monitor
� Access

– StrongARM: mapped into address space

– Microengines: special instructions
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Csr Instruction

� Used on microengines
� General form

csr [ cmd, $xfer, CSR, count ]

� Alternatives

– Instruction fast_wr provides access to subset of CSRs
through the FBI unit

– Instruction local_csr_rd provides access to local CSRs
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Intel Dispatch Loop Macros

� Each microengine executes event loop

– Analogous to core event loop

– Events are low level (e.g., hardware device becomes
ready)

– Known as dispatch loop
� SDK includes predefined macros related to dispatch loop
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Predefined Dispatch Loop Macros

Macro Purpose

Buf_Alloc Allocate a packet buffer
Buf_GetData Get the SDRAM address of a packet buffer

(note: the name is misleading)
DL_Drop Drop a packet and recycle the buffer
DL_GetBufferLength Compute the length (in bytes) of the packet

portion of a buffer
DL_GetBufferOffset Compute the offset of packet data within a buffer
DL_GetInputPort Obtain the input port over which the packet arrived
DL_GetOutputPort Find the port over which the packet will be sent
DL_GetRxStat Obtain the receive status of the packet
DL_Init Initialize the dispatch loop macros
DL_MESink Send a packet to next microblock group
DL_SASink Send a packet to the StrongARM
DL_SASource Receive a packet from the StrongARM
DL_SetAceTag Specify the microblock that is handling a packet

so the StrongARM will know
DL_SetBufferLength Specify the length of packet data in the buffer
DL_SetBufferOffset Specify the offset of packet data in the buffer
DL_SetExceptionCode Specify the exception code for the StrongARM
DL_SetInputPort Specify the port over which the packet arrived
DL_SetOutputPort Specify the port on which the packet will be sent
DL_SetRxStat Specify the receive status of the packet
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Illustration Of Packet Flow

dispatch

loop

packet from
microengine or

physical input port

packet from
core component
on StrongARM

exception passed
up to the

StrongARM

packet
dropped

packet sent to
physical device or

next microACE
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Packet Selection Macros

� Also supplied by SDK
� Allow selection of packet from queues
� Two approaches

– Round-robin from a set of queues

* Used for 10 / 100 Ethernet

* Macro is RoundRobinSource

– Strict FIFO ordering

* Used for Gigabit Ethernet

* Macro is FifoSource
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Obtaining Packets From StrongARM

� Microengine can receive packets from

– Input port (ingress) or another microengine

– StrongARM
� Dispatch loop tests for each possibility
� Packets from StrongARM should have lower priority
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Implementation Of Priority

� Macro EthernetIngress obtains Ethernet frame
� Macro DL_SASource obtains packet from StrongARM
� Each returns IX_BUFFER_NULL, if no packet waiting
� To achieve priority, DL_SASource counts

SA_CONSUME_NUM times before returning a packet
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Packet Disposition

� Auxiliary variable used
� Dispatch loop finds a packet and calls macro X to process
� Macro X sets variable dl_buffer_next
� Dispatch loop examines dl_buffer_next and invokes

– DL_Drop to drop packet

– DL_SASink to send to StrongARM

– DL_MESink to send to ‘‘next’’ ACE
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Other Predefined Macros

� Macros needed for

– Buffer manipulation

– Packet processing

– Other tasks
� Predefined macros available
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Example Code To Process Packet Header

/* Allocate eight SDRAM transfer registers to hold the packet header */

xbuf_alloc [ $$hdr, 8 ]

/* Reserve two general-purpose registers for the computation */

.local base offset

/* Compute the SDRAM address of the data buffer */

Buf_GetData [ base, dl_buffer_handle ]

/* Compute the byte offset of the start of the packet in the buffer */

DL_GetBufferOffset [ offset ]

/* Convert the byte offset to SDRAM words by dividing by eight */

/* (shift right by three bits) */

alu_shf [ offset, – –, B, offset, >>3 ]

/* Load thirty-two bytes of data from SDRAM into eight SDRAM */

/* transfer registers. Start at SDRAM address base + offset */

sdram [ read, $$hdr0, base, offset, 4 ]
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Example Code To Process Packet Header
(continued)

/* Inform the assembler that we have finished using the two */

/* registers: base and offset */

.endlocal

/* Process the packet header in the SDRAM transfer registers

/* starting at register $$hdr */

. . .

/* Free the SDRAM transfer registers when finished */

xbuf_free [ $$hdr ]
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Using Intel Dispatch Macros

� Programmer must perform five steps

– Define three symbolic constants

– Declare registers with a .local directive

– Use a .import_var directive to name tag values
(optional)

– Include the macros pertinent to the microblock

– Initialize the macros as the first part of a dispatch loop
� Note: three constants must be defined before macros are

included

– SA_CONSUME_NUM

– IX_EXCEPTION

– SEQNUM_IGNORE
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Required Register Declarations

� The following declarations are required

.local dl_reg1 dl_reg2 dl_reg3 dl_buffer_handle dl_next_block
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Naming Tag Values

� Required in microblock that sends packets (exceptions) to
core component

� Uses .import_var directive
� Example

.import_var IPV4_TAG
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Including Intel Macros

� Must include two files

– DispatchLoop_h.uc

– DispatchLoopImportVars.h
� Ingress microblock includes

– EthernetIngress.uc
� Egress microblock includes

– EthernetEgress.uc
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Initialization Of Intel Macros

� Program calls DL_Init to perform initialization
� Typical initialization sequence

DL_Init [ ]
EthernetIngress_Init [ ]
. . . /* Other microblock initialization calls */
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Packet I/O

� Physical frame divided into sixty-four octet units for transfer
� Each unit known as mpacket
� Division performed by interface hardware
� Microengine transfers each mpacket separately
� Header uses two bits to specify position of mpacket

– Start Of Packet (SOP) set for first mpacket of frame

– End Of Packet (EOP) set for last mpacket of frame
� Note: cell can have both SOP and EOP set
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Packet I/O
(continued)

� No interrupts
� Dispatch loop uses polling

– Ready Bus Sequencer checks devices and sets bit

– Dispatch loop tests bit
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Ingress Packet Transfer

� Incoming mpacket placed in Receive FIFO (RFIFO)
� Microengine can transfer from RFIFO to

– SRAM transfer registers

– Directly into SDRAM
� SDRAM transfer has form

sdram [ r_fifo_rd, $$xfer, addr1, addr2, count ], indirect_ref
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Packet Egress

� Steps required

– Reserve space in Transmit FIFO (TFIFO)

– Copy mpacket from memory into TFIFO

– Set SOP and EOP bits

– Set valid flag in XMIT_VALIDATE register
� General form used to copy from SDRAM to TFIFO

sdram [ t_fifo_wr, $$xfer, addr1, addr2, count ], indirect_ref
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Setting The Valid Flag
In A XMIT_VALIDATE Register

� Valid bit is in CSR
� Use fast_wr instruction to access

fast_wr [ 0, xmit_validate ], indirect_ref

CS490N  --  Chapt. 25 31 2003



Other Details

� Microengine must check status of mpacket to determine if

– MAC hardware detected problem (e.g., bad CRC)

– Mpacket arrived with no problems
� Information found in RCV_CNTL CSR
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Summary

� Special operations used for

– Synchronization

– Memory access

– CSR access
� Microengine executes event loop known as dispatch loop

– Checks for packets arriving

– Calls macro(s) to process each packet

– Sends packets to next specified destination
� Intel supplies large set of dispatch loop macros

CS490N  --  Chapt. 25 33 2003



Summary
(continued)

� Many details required to use Intel dispatch macros
� Packet I/O performed on sixty-four byte units called

mpackets
� Mpacket can be transferred from RFIFO to

– SRAM transfer registers

– SDRAM
� Many details required to perform trivial operations on

packet
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Questions?



XXVI

An Example ACE
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We Will

� Consider an ACE
� Examine all the user-written code
� See how the pieces fit together
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Choice Of Network System

� Used to demonstrate

– Basic concepts

– Code structure and organization
� Need to

– Minimize code size and complexity

– Avoid excessive detail

– Ignore performance optimizations
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The Example

� Trivial network system
� In-line paradigm using two ports

– Ethernet-to-Ethernet connectivity

– Known as bump-in-the-wire
� Count Web packets

– Frame carries IP

– Datagram carries TCP

– Destination port is 80
� Named WWBump ( Web Wire Bump )

CS490N  --  Chapt. 26 4 2003



Illustration Of WWBump

router

switch

wwbump
. . .

connections to
local systems

to Internet

� Passes all traffic in either direction
� Counts Web packets
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Design

� Code written for bridal veil testbed
� Accepts input from either port zero or port one
� Forwards incoming traffic to opposite port
� Uses the ingress and egress library ACEs supplied by Intel
� Defines a wwbump MicroACE
� Passes each Web packet to the core component (exception)
� Provides access to current packet count via the crosscall
� Uses an ixsys.config file to specify binding of targets
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Organization Of ACEs

wwbump ACE
(microblock)

ingress ACE
(microblock)

egress ACE
(microblock)

input
ports

output
ports

StrongARM

microengine

wwbump ACE
(core)

crosscall
client
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Static ACE Data Structure

� Intel software requires

– Static control block for ACE

– Structure is named ( ix_ace )
� Programmer can add additional fields to control block
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Fields In The Wwbump
Control Block

Field Type Purpose

name string Name of the ACE in ixsys.config
tag int ID of ACE assigned by Resource Manager
ue int Bitmask of microengines running the ACE
bname string TAG name that the microblock uses
ccbase ix_base_t Handle for crosscall service
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Example Declarations (wwbump.h)

/* wwbump.h -- global constants and declarations for wwbump */

#ifndef __WWBUMP_H
#define __WWBUMP_H

#include <ix/asl.h>
#include <ix/microace/rm.h>
#include <ix/asl/ixbasecc.h>
#include <wwbump_import.h>

typedef struct wwbump wwbump;
struct wwbump
{

ix_ace ace; /* Mandatory handle for all ACEs */

char name[128]; /* Name of this ACE given in ixsys.config */
int tag; /* ID assigned by RM for SA-to-ME communic. */
int ue; /* Bitmask of MEs this MicroACE runs on */
char bname[128]; /* Block name (need .import_var $bname_TAG) */
ix_base_t ccbase; /* Handle for cross call service */

};

/* Exception handler prototype */
int exception(void *ctx, ix_ring r, ix_buffer b);

#endif /* __WWBUMP_H */
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Shared Symbolic Constants

� Core component programmed in C
� Microblock component programmed in assembly language
� Typical trick: bracket lines of code with #ifndef to prevent

multiple instantiations
� Unusual trick

– Both languages share C-preprocessor syntax

– Can place all constant definitions in shared file
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Distinguishing Code At Compile Time

� Preprocessor can distinguish

– Code for core component

– Code for microblock component
� Technique: symbolic constant MICROCODE only defined

when assembling microcode
� Can use #ifdef
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Example File Of Symbolic
Constants (wwbump_import.h)

/* wwbump_import.h -- define or import tag for wwbump MicroACE */

#ifndef _WWBUMP_IMPORT_H
#define _WWBUMP_IMPORT_H

#ifdef MICROCODE

.import_var WWBUMP_TAG

#else

#define WWBUMP_TAG_STR "WWBUMP_TAG"

#endif

#endif /* _WWBUMP_IMPORT_H */
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Division Of Microcode
Into Files

� Two main files
� Follow Intel naming convention: macro and file names

related to microcode start with uppercase letter
� WWBump.uc

– Code for packet processing

– Defines macro WWBump
� WWB_dl.uc

– Contains code for dispatch loop
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WWBump Macro

� Performs two functions

– Specifies eventual output port for packet

– Classifies the packet
� Classification

– Represented as disposition

* StrongARM (exception)

* Next microblock (Egress)

– Stored in register dl_next_block
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WWBump Details

� Uses Intel ingress macro
� Calls DL_GetInputPort to determine input port (0 or 1)
� Calls DL_SetOutputPort to specify output port
� When passing packet to core component

– Set exception to WWBUMP_TAG

– Set return code to IX_EXCEPTION
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Steps WWBump Takes During Classification

� Read packet header into six SDRAM transfer registers
� Check

– Ethernet type field (080016)

– IP type field (6)

– TCP destination port (80)
� Difficult (ugly) in microcode

– Must use IP header length to calculate port offset

– Port number is 16 bits; transfer register is 32
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File WWBump.uc (part 1)

/* WWBump.uc - microcode to process a packet */

#define ETH_IP 0x800 ; Ethernet type for IP
#define IPT_TCP 6 ; IP type for TCP
#define TCP_WWW 80 ; Dest. port for WWW

#macro WWBumpInit[]
/* empty because no initialization is needed */

#endm

#macro WWBump[]
xbuf_alloc[$$hdr,6] ; Allocate 6 SDRAM registers

/* Reserve a register (ifn) and compute the output port for the */
/* frame; a frame that arrives on port 0 will go out port 1, and */
/* vice versa */

.local ifn
DL_GetInputPort[ifn] ; Copy input port number to ifn
alu [ ifn, ifn, XOR, 1 ] ; XOR with 1 to reverse number
DL_SetOutputPort[ifn] ; Set output port for egress

.endlocal
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File WWBump.uc (part 2)

/* Read first 24 bytes of frame header from SDRAM */

.local base off
Buf_GetData[base, dl_buffer_handle] ; Get the base SDRAM address
DL_GetBufferOffset[off] ; Get packet offset in bytes
alu_shf[off, --, B, off, >>3] ; Convert to Quad-words
sdram[read, $$hdr0, base, off, 3], ctx_swap ; Read 3 Quadwords

; (six registers)
.endlocal

/* Classify the packet. If any test fails, branch to NotWeb# */

/* Verify frame type is IP (1st two bytes of the 4th longword) */

.local etype
immed[etype, ETH_IP]
alu_shf[ --, etype, -, $$hdr3, >>16] ; 2nd operand is shifted
br!=0[NotWeb#]

.endlocal

/* Verify IP type is TCP (last byte of the 6th longword) */

br!=byte[$$hdr5, 0, IPT_TCP, NotWeb#]
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File WWBump.uc (part 3)

/* Verify destination port is web (offset depends on IP header size */

.local base boff dpoff dport

/* Get length of IP header (3rd byte of 4th longword), and */
/* convert to bytes by shifting by six bits instead of eight */

ld_field_w_clr[dpoff, 0001, $$hdr3, >>6] ; Extract header length

/* Mask off bits above and below the IP length */

.local mask
immed[mask, 0x3c] ; Mask out upper and lower 2 bits
alu [ dpoff, dpoff, AND, mask ]

.endlocal
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File WWBump.uc (part 4)

/* Register dpoff contains the IP header length in bytes. Add */
/* Ethernet header length (14) and offset of the destination */
/* port (2) to obtain offset from the beginning of the packet */
/* of the destination port. Add to SDRAM address of buffer, */
/* and convert to quad-word offset by dividing by 8 (shift 3). */

alu[dpoff, dpoff, +, 16] ; Add Ether+TCP offsets
Buf_GetData[base, dl_buffer_handle] ; Get buffer base address
DL_GetBufferOffset[boff] ; Get data offset in buf.
alu[boff, boff, +, dpoff] ; Compute byte address
alu_shf[boff, --, B, boff, >>3] ; Convert to Q-Word addr.
sdram[read, $$hdr0, base, boff, 1], ctx_swap ; Read 8 bytes

/* Use lower three bits of the byte offset to determine which */
/* byte the destination port will be in. If value >= 4, dest. */
/* port is in the 2nd longword; otherwise it’s in the first. */

alu[ dpoff, dpoff, AND, 0x7 ] ; Get lowest three bits
alu[ --, dpoff, -, 4] ; Test and conditional
br>=0[SecondWord#] ; branch if value >=4
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File WWBump.uc (part 5)

FirstWord#: /* Load upper two bytes of register $$hdr0 */
ld_field_w_clr[dport, 0011, $$hdr0, >>16] ; Shift before mask
br[GotDstPort#] ; Check port number

SecondWord#: /* Load lower two bytes of register $$hdr1 */

ld_field_w_clr[dport, 0011, $$hdr1, >>16] ; Shift before mask

GotDstPort#: /* Verify destination port is 80 */

.local wprt
immed[wprt, TCP_WWW] ; Load 80 in reg. wprt
alu[--, dport, -, wprt] ; Compare dport to wprt
br!=0[NotWeb#] ; and branch if not equal

.endlocal
.endlocal
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File WWBump.uc (part 6)

IsWeb#: /* Found a web packet, so send to the StrongARM */

/* Set exception code to zero (we must set this) */
.local exc ; Declare register exc

immed[exc, 0] ; Place zero in exc and
DL_SetExceptionCode[exc] ; set exception code

.endlocal

/* Set tag core component’s tag (required by Intel macros) */
.local ace_tag ; Declare register ace_tag

immed32[ace_tag, WWBUMP_TAG] ; Place wwbump tag in reg.
DL_SetAceTag[ace_tag] ; and set tag

.endlocal

/* Set register dl_next_block to IX_EXCEPTION to cause dispatch */
/* to pass packet to StrongARM as an exception */
immed[dl_next_block, IX_EXCEPTION] ; Store return value
br[Finish#] ; Done, so branch to end

NotWeb#: /* Found a non-web packet, so forward to next microblock*/
immed32[dl_next_block, 1] ; Set return code to 1
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File WWBump.uc (part 7)

Finish#: /* Packet processing is complete, so clean up */
xbuf_free[$$hdr] ; Release xfer registers
#endm
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Dispatch Loop Algorithm

initialize dispatch loop macros;
do forever {

if (packet has arrived from the StrongARM)
Send the packet to egress microblock;

if (packet has arrived from Ethernet port) {
Invoke WWBump macro to process the packet;
if (return code specifies exception) {

Send packet to StrongARM;
} else {

Send packet to egress microblock;
}

}
}
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Dispatch Loop Code

� Contained in file WWB_dl.uc
� Not defined as separate macro
� Includes several files

– Standard (Intel) header files to define basic macros

– Our packet processing macro (file WWBump.uc)
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File WWB_dl.uc (part 1)

/* WWB_dl.uc - dispatch loop for wwbump program */

/* Constants */

#define IX_EXCEPTION 0 ; Return value to raise an exception
#define SA_CONSUME_NUM 31 ; Ignore StrongARM packets 30 of 31 times
#define SEQNUM_IGNORE 31 ; StrongARM fastport sequence num

/* Register declarations (as required for Intel dispatch loop macros) */
.local dl_reg1 dl_reg2 dl_reg3 dl_reg4 dl_buffer_handle dl_next_block

/* Include files for Intel dispatch loop macros */
#include "DispatchLoop_h.uc"
#include "DispatchLoopImportVars.h"
#include "EthernetIngress.uc"
#include "wwbump_import.h"

/* Include the packet processing macro defined previously */
#include "WWBump.uc"
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File WWB_dl.uc (part 2)

/* Microblock initialization */
DL_Init[]
EthernetIngress_Init[]
WWBumpInit[]

/* Dispatch loop that runs forever */
.while(1)

Top_Of_Loop#: /* Top of dispatch loop (for equivalent of C continue) */

/* Test for a frame from the StrongARM */
DL_SASource[ ] ; Get frame from SA
alu[--, dl_buffer_handle, -, IX_BUFFER_NULL]; If no frame, go test
br=0[Test_Ingress#], guess_branch ; for ingress frame
br[Send_MB#] ; If frame, go send it

� Macro DLSAsource

– Checks for packets from StrongARM

– Returns one packet after SA_CONSUME_NUM calls
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File WWB_dl.uc (part 3)

Test_Ingress#: /* Test for an Ethernet frame */

EthernetIngress[ ] ; Get an Ethernet frame
alu[--, dl_buffer_handle, -, IX_BUFFER_NULL]; If no frame, go back
br=0[Top_Of_Loop#] ; to start of loop

/* Check if ingress frame valid and drop if not */
br!=byte[dl_next_block, 0, 1, Drop_Packet#]

/* Invoke WWBump macro to set output port and classify the frame */
WWBump[]

/* Use return value from WWBump to dispose of frame: */
/* if exception, jump to code that sends to StrongARM */
/* else jump to code that sends to egress */

alu[ --, dl_next_block, -, IX_EXCEPTION] ; Return code is exception
br=0[Send_SA#] ; so send to StrongARM

br[Send_MB#] ; Otherwise, send to next
; microblock

� Note dl_next_block specifies whether the frame should be
treated as an exception or forwarded to next microblock
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File WWB_dl.uc (part 4)

Send_SA#:
/* Send the frame to the core component on the StrongARM as an */
/* exception. Note that tag and exception code are assigned by */
/* the microblock WWBump. */
DL_SASink[ ]
.continue ; Continue dispatch loop

Send_MB#:
/* Send the frame to the next microblock (egress). Note that the */
/* output port (field oface hidden in the internal structure) has */
/* been assigned by microblock WWBump. */
DL_MESink[ ]
nop
.continue

Drop_Packet#:
/* Drop the frame and start over getting a new frame */
DL_Drop[ ]

.endw

nop ; Although the purpose of these no-ops is
nop ; undocumented, Intel examples include them.
nop
.endlocal
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Code For Core Component

� Written in C
� Defines two basic functions

– Exception handler called when packet arrives from
StrongARM

– Default action called when another frame arrives (e.g.,
from another ACE)
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Exception Handler

� Function named exception
� Receives packets from microblock
� Must call Intel function RmGetExceptionCode
� Can call Intel function RmSendPacket to forward packet to a

microblock
� Three arguments

– Pointer to ACE control block

– Ring buffer (not used in our code)

– Pointer to ix_buffer holding packet
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Default Action

� Function named ix_action_default
� Required part of every ACE
� Called when frame arrives from source other than

microblock component
� Our version merely discards the packet
� Code in file action.c
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File action.c (part 1)

/* action.c -- Core component of wwbump that handles exceptions */

#include <wwbump.h>
#include <stdlib.h>
#include <wwbcc.h>

ix_error exception(void *ctx, ix_ring r, ix_buffer b)
{

struct wwbump *wwb = (struct wwbump *) ctx; /* ctx is the ACE */
ix_error e;
unsigned char c;
(void) r; /* Note: not used in our example code */

/* Get the exception code: Note: Intel code requires this step */
e = RmGetExceptionCode(wwb->tag, &c);
if ( e ) {

fprintf(stderr, "%s: Error getting exception code", wwb->name);
ix_error_dump(stderr, e);
ix_buffer_del(b);
return e;

}

� Call to RmGetExceptionCode is required
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File action.c (part 2)

Webcnt++; /* Count the packet as a web packet */

/* Send the packet back to wwbump microblock */
e = RmSendPacket(wwb->tag, b);
if ( e ) { /* If error occurred, report the error */

ix_error_dump(stderr, e);
ix_buffer_del(b);
return e;

}

return 0;
}

� First line of this page

– Performs entire ‘‘work’’ of exception handler

– Increments global counter ( Webcnt )
� Once packet has been counted, RmSendPacket enqueues

packet back to microblock group
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File action.c (part 3)

/* A core component must define an ix_action_default function that is */
/* invoked if a frame arrives from the core component of another ACE. */
/* Because wwbump does not expect such frames, the version of the */
/* default function used with wwmbump simply deletes any packet that */
/* it receives via this interface. */

int ix_action_default(ix_ace * a, ix_buffer b)
{

(void) a; /* This line prevents a compiler warning*/
ix_buffer_del(b); /* Delete the frame */
return RULE_DONE; /* This step required */

}

� Code for default action is trivial: discard any packet that
arrives
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Initialization And Finalization

� Additional code needed for each ACE
� Function ix_init performs initialization

– Allocates memory for the ACE control block

– Invokes Intel macros

* ix_ace_init for internal initialization

* RmInit to form connection to Resource Manager

* RmRegister to register with Resource Manager
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Initialization And Finalization
(continued)

� Function ix_fini performs finalization

– Invokes Intel macros

* cc_fini to terminate crosscalls

* RmTerm to terminate Resource Manager

* ix_ace_fini to deallocate ACE control block
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File init.c (part 1)

/* init.c -- Initialization and completion routines for the wwbump ACE */

#include <stdlib.h>
#include <string.h>
#include <wwbump.h>
#include <wwbcc.h>

/* Initialization for the wwbump ACE */
ix_error ix_init(int argc, char **argv, ix_ace ** ap)
{

struct wwbump *wwb;
ix_error e;
(void)argc;

/* Set so ix_fini won’t free a random value if ix_init fails */
*ap = 0;

/* Allocate memory for the WWBump structure (includes ix_ace) */
wwb = malloc(sizeof(struct wwbump));
if ( wwb == NULL )

return ix_error_new(IX_ERROR_LEVEL_LOCAL, IX_ERROR_OOM, 0,
"couldn’t allocate memory for ACE");
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File init.c (part 2)

/* Microengine mask is always passed as the third argument */
wwb->ue = atoi(argv[2]);

/* Set blockname used to associate the ACE with its microblock */
strcpy(wwb->bname, "WWBUMP");

/* The name of the ACE is always the 2nd argument */
/* The first argument is the name of the executable */
wwb->name[sizeof(wwb->name) - 1] = ’\0’;
strncpy(wwb->name, argv[1], sizeof(wwb->name) - 1);

/* Initializes the ix_ace handle (including dispatch loop, control */
/* access point, etc) */
e = ix_ace_init(&wwb->ace, wwb->name);
if (e) {

free(wwb);
return ix_error_new(0,0,e,"Error in ix_ace_init()\n");

}
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File init.c (part 3)

/* Initialize a connection to the resource manager */
e = RmInit();
if (e) {

ix_ace_fini(&wwb->ace);
free(wwb);
return ix_error_new(0,0,e,"Error in RmInit()\n");

}

/* Register with the resource manager (including exception handler) */
e = RmRegister(&wwb->tag, wwb->bname,&wwb->ace, exception, wwb,

wwb->ue);
if (e) {

RmTerm();
ix_ace_fini(&wwb->ace);
free(wwb);
return ix_error_new(0,0,e,"Error in RmRegister()\n");

}
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File init.c (part 4)

/* Initialize crosscalls */
e = cc_init(wwb);
if ( e ) {

RmUnRegister(&wwb->tag);
RmTerm();
ix_ace_fini(&wwb->ace);
free(wwb);
return e;

}

*ap = &wwb->ace;
return 0;

}

ix_error ix_fini(int argc, char **argv, ix_ace * ap)
{

struct wwbump *wwb = (struct wwbump *) ap;
ix_error e;
(void)argc;
(void)argv;

/* ap == 0 if ix_init() fails */
if ( ! ap )
return 0;
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File init.c (part 5)

/* Finalize crosscalls */
e = cc_fini(wwb);
if ( e )

return e;

/* Unregister the exception handler and microblocks */
e = RmUnRegister(wwb->tag);
if ( e )

return ix_error_new(0,0,e,"Error in RmUnRegister()\n");

/* Terminate connection with resource manager */
e = RmTerm();
if ( e )

return ix_error_new(0,0,e,"Error in RmTerm()\n");

/* Finalize the ix_ace handle */
e = ix_ace_fini(&wwb->ace);
if ( e )

return ix_error_new(0,0,e,"Error in ix_ace_fini()\n");

/* Free the malloc()ed memory */
free(wwb);
return 0;

}
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The Important Point

� Wwbump performs a trivial task
� The code invokes Intel’s ingress and egress ACEs
� The code is written using Intel’s dispatch loop macros
� The code is large.
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The Important Point

� Wwbump performs a trivial task
� The code invokes Intel’s ingress and egress ACEs
� The code is written using Intel’s dispatch loop macros
� The code is huge!
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An Example Crosscall

� Trivial example

– Provide access to current Web packet count

– Wwbump ACE acts as crosscall server

– Only exports one function

– Can be called from non-ACE program
� Exported function named getcnt
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Basic Steps When Building
A Crosscall Facility

� Define a set of functions that the crosscall server exports
� Create an Interface Definition Language ( IDL ) declaration

for each function, and use the IDL compiler to generate the
corresponding stub code

� Write code for each exported function with arguments that
match the generated stub arguments

� Write an initialization function
� Write a finalization function
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Example IDL Specification

interface wwbump
{

twoway long getcnt();
};

� IDL specification declares

– Name and type of exported function

– Type of each argument
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Files Generated By The IDL Compiler

File Contents Description

IFACE_stub_c.h Crosscall data types and types for
initialization and finalization functions

IFACE_intName Interface name as a string
IFACE_FCN_opName Function name as a string
stub_IFACE_init() Client crosscall initialization
stub_IFACE_fini() Client crosscall finalization
IFACE_FCN_fptr Function pointer for FCN
stub_IFACE_FCN() Client-side crosscall function
CC_VMT_IFACE Crosscall Virtual Method Table structure
deferred_cb_IFACE_IFCN() Client callback prototype
IFACE_FCN_cb_fptr Client callback function pointer
CB_VMT_IFACE Client callback VMT
getCBVMT_IFACE() Find VMT for callback

IFACE_sk_c.h Declarations of server-side interfaces
sk_IFACE_init() Server initialization
sk_IFACE_fini() Server finalization
getCCVMT_IFACE() Find the VMT for the interface
invoke_IFACE_IFCN() Invoke a crosscall
IFACE_stub_c.h Included file
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More Files Generated By The IDL Compiler

File Contents Description

IFACE_cc_c.h Prototypes for individual crosscall functions
IFACE_FCN() Prototype for function FCN
IFACE_sk_c.h Included file

IFACE_cb_c.h Prototypes and Virtual Method Tables
for client-side callback functions

IFACE_FCN_cb() Prototype for client callback
IFACE_stub_c.h Included file

IFACE_stub_c.c Code for client-side initialization and
finalization crosscall functions

IFACE_sk_c.c Code for server-side initialization and
finalization and VMT accessor functions

IFACE_cc_c.h Prototypes for individual crosscall functions
IFACE_FCN() Prototype for function FCN
IFACE_sk_c.h Included file

IFACE_cb_c.h Prototypes and Virtual Method Tables
for client-side callback functions

IFACE_FCN_cb() Prototype for client callback
IFACE_stub_c.h Included file
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Even More IDL-Generated Files

File Description

IFACE_cc_c.c Default code for crosscall functions
that merely return an error.

IFACE_cb_c.c Default implementations of client callback
functions that merely return an error.
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Code For A (Trivial) Crosscall Server

� Programmer must supply

– Code for exported function(s)

– Initialization function

– Finalization function

– Global variable declarations

– Code to change pointer(s) in global virtual method table
� Example code in file wwbcc.c
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File wwbcc.c (part 1)

/* wwbcc.c -- wwbump crosscall functions */

#include <stdlib.h>
#include <string.h>
#include <wwbump.h>
#include <wwbcc.h>
#include "wwbump_sk_c.h"
#include "wwbump_cc_c.h"

long Webcnt; /* Stores the count of web packets */

/* Initialization function for the crosscall */

ix_error cc_init(struct wwbump *wwb)
{

CC_VMT_wwbump *vmt = 0;
ix_cap *capp;
ix_error e;

/* Initialize an ix_base_t structure to 0 */
memset(&wwb->ccbase, 0, sizeof(wwb->ccbase));

/* Get the OMS communications access point (CAP) of the ACE */
ix_ace_to_cap(&wwb->ace, &capp);
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File wwbcc.c (part 2)

/* Invoke the crosscall initialization function and check for error */
e = sk_wwbump_init(&wwb->ccbase, capp);
if (e)

return ix_error_new(0,0,e,"Error in sk_wwbump_init()\\n");

/* Retarget incoming crosscalls to our getcnt function */

/* Get a pointer to the CrossCall Virtual Method Table */
e = getCCVMT_wwbump(&wwb->ccbase, &vmt);
if (e)
{

sk_wwbump_fini(&wwb->ccbase);
return ix_error_new(0,0,e,"Error in getCCVMT_wwbump()\\n");

}

/* Retarget function pointer in the table to getcnt */
vmt->_pCC_wwbump_getcnt = getcnt;

/* Set initial count of web packets to zero */
Webcnt = 0;

return 0;
}
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File wwbcc.c (part 3)

/* Cross call termination function */
ix_error cc_fini(struct wwbump *wwb)
{

ix_error e;
/* Finalize crosscall and check for error */
e = sk_wwbump_fini(&wwb->ccbase);
if ( e )

return ix_error_new(0,0,e,"Error in sk_wwbump_fini()\\n");

return 0; /* If no error, indicate sucessful return */
}

/* Function that is invoked each time a crosscall occurs */
ix_error getcnt(ix_base_t* bp, long* rv)
{

(void)bp; /* Reference unused arg to prevent compiler warnings */

/* Actual work: copy the web count into the return value */
*rv = Webcnt;

/* Return 0 for success */
return 0;

}
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Tying It All Together

� Need to specify

– ACEs to be loaded

– Which ACEs are ingress / egress

– Number and speed of network ports
� Configuration file used

– Named ixsys.config

– Programmer usually modifies sample file
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Configuration Examples

file 0 /mnt/SlowIngressWWBump.uof

� Defines file /mnt/lowIngressWWBump.uof to be

– Ingress microcode (type 0)

– Associated with slow ports (10/100 ports)
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Configuration Examples
(continued)

microace wwbump /mnt/wwbump none 0 0

� Specifies

– wwbump is a microace

– Runs on the ingress side (first zero)

– Has unknown type (second zero)
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Configuration Examples
(continued)

bind static ifaceInput/default wwbump

bind static wwbump/default ifaceOutput

� Specifies

– Default binding for ingress ACE is wwbump

– Default binding for output from wwbump is ACE named
ifaceOutput
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Configuration Examples
(continued)

sh command

� Specifies command to be run on the StrongARM
� Typical use: preload ARP cache

sh arp -s 10.1.0.2 01:02:03:04:05:06
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Summary

A huge amount of low-level code is required, even for a
trivial ACE that counts Web packets or a trivial crosscall that
returns the contents of an integer. In addition to the code, a
detailed configuration file must be created to specify bindings
among ACEs.
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Questions?



X

Switching Fabrics
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Physical Interconnection

� Physical box with backplane
� Individual blades plug into backplane slots
� Each blade contains one or more network connections
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Logical Interconnection

� Known as switching fabric
� Handles transport from one blade to another
� Becomes bottleneck as number of interfaces scales
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Illustration Of Switching Fabric

switching
fabric

1

2
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...

1

2

M

...

CPU

input ports output ports

input
arrives

output
leaves

� Any input port can send to any output port
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Switching Fabric Properties

� Used inside a single network system
� Interconnection among I/O ports (and possibly CPU)
� Can transfer unicast, multicast, and broadcast packets
� Scales to arbitrary data rate on any port
� Scales to arbitrary packet rate on any port
� Scales to arbitrary number of ports
� Has low overhead
� Has low cost
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Types Of Switching Fabrics

� Space-division (separate paths)
� Time-division (shared medium)
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Space-Division Fabric (separate paths)
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� Can use multiple paths simultaneously
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Space-Division Fabric (separate paths)

switching fabric
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interface hardware

� Can use multiple paths simultaneously
� Still have port contention
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Desires
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Desires

� High speed
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Desires

� High speed
� Low cost
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Desires

� High speed and low cost!
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Possible Compromise

� Separation of physical paths
� Less parallel hardware
� Crossbar design
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Space-Division (Crossbar Fabric)
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controller
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interface hardware
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Crossbar

� Allows simultaneous transfer on disjoint pairs of ports
� Can still have port contention
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Crossbar

� Allows simultaneous transfer on disjoint pairs of ports
� Can still have port contention
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Solving Contention

� Queues (FIFOs)

– Attached to input

– Attached to output

– At intermediate points
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Crossbar Fabric With Queuing

switching fabric

controller
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input queues
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Time-Division Fabric (shared bus)

shared bus

1 2 N.. . 1 2 M.. .

input ports output ports

� Chief advantage: low cost
� Chief disadvantage: low speed
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Time-Division Fabric (shared memory)

shared memory
switching fabric

controller
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interface

� May be better than shared bus
� Usually more expensive
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Multi-Stage Fabrics

� Compromise between pure time-division and pure space-
division

� Attempt to combine advantages of each

– Lower cost from time-division

– Higher performance from space-division
� Technique: limited sharing
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Banyan Fabric

� Example of multi-stage fabric
� Features

– Scalable

– Self-routing

– Packet queues allowed, but not required
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Basic Banyan Building Block

2-input
switch

"0"

"1"

input #1

input #2

� Address added to front of each packet
� One bit of address used to select output
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4-Input And 8-Input Banyan Switches

4-input switch

(a)

SW1 SW3

SW2 SW4

"00"
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8-input switch
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4-input switch
(for details
see above)

4-input switch
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see above)
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inputs outputs

inputs outputs
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Summary

� Switching fabric provides connections inside single network
system

� Two basic approaches

– Time-division has lowest cost

– Space-division has highest performance
� Multistage designs compromise between two
� Banyan fabric is example of multistage
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XIII

Network Processor Architectures
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Architectural Explosion

An excess of exuberance and a lack of experience have
produced a wide variety of approaches and architectures.
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Principle Components

� Processor hierarchy
� Memory hierarchy
� Internal transfer mechanisms
� External interface and communication mechanisms
� Special-purpose hardware
� Polling and notification mechanisms
� Concurrent and parallel execution support
� Programming model and paradigm
� Hardware and software dispatch mechanisms
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Processing Hierarchy

� Consists of hardware units
� Performs various aspects of packet processing
� Includes onboard and external processors
� Individual processor can be

– Programmable

– Configurable

– Fixed
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Typical Processor Hierarchy

Level Processor Type Programmable? On Chip?

8 General purpose CPU yes possibly
7 Embedded processor yes typically
5 I/O processor yes typically
6 Coprocessor no typically
4 Fabric interface no typically
3 Data transfer unit no typically
2 Framer no possibly
1 Physical transmitter no possibly
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Memory Hierarchy

� Memory measurements

– Random access latency

– Sequential access latency

– Throughput

– Cost
� Can be

– Internal

– External
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Typical Memory Hierarchy

Memory Type Rel. Speed Approx. Size On Chip?

Control store 100 103 yes
G.P. Registers† 90 102 yes
Onboard Cache 40 103 yes
Onboard RAM 7 103 yes
Static RAM 2 107 no
Dynamic RAM 1 108 no
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Internal Transfer Mechanisms

� Internal bus
� Hardware FIFOs
� Transfer registers
� Onboard shared memory
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External Interface And
Communication Mechanisms

� Standard and specialized bus interfaces
� Memory interfaces
� Direct I/O interfaces
� Switching fabric interface

CS490N  --  Chapt. 13 9 2003



Example Interfaces

� System Packet Interface Level 3 or 4 (SPI-3 or SPI-4)
� SerDes Framer Interface (SFI)
� CSIX fabric interface

Note: The Optical Internetworking Forum (OIF) controls the SPI and SFI
standards.
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Polling And Notification Mechanisms

� Handle asynchronous events

– Arrival of packet

– Timer expiration

– Completion of transfer across the fabric
� Two paradigms

– Polling

– Notification
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Concurrent Execution Support

� Improves overall throughput
� Multiple threads of execution
� Processor switches context when a thread blocks
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Support For Concurrent Execution

� Embedded processor

– Standard operating system

– Context switching in software
� I/O processors

– No operating system

– Hardware support for context switching

– Low-overhead or zero-overhead
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Concurrent Support Questions

� Local or global threads (does thread execution span
multiple processors)?

� Forced or voluntary context switching (are threads
preemptable)?
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Hardware And Software Dispatch Mechanisms

� Refers to overall control of parallel operations
� Dispatcher

– Chooses operation to perform

– Assigns to a processor
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Implicit And Explicit Parallelism

� Explicit parallelism

– Exposes parallelism to programmer

– Requires software to understand parallel hardware
� Implicit parallelism

– Hides parallel copies of functional units

– Software written as if single copy executing
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Architecture Styles, Packet Flow,
And Clock Rates

� Embedded processor plus fixed coprocessors
� Embedded processor plus programmable I/O processors
� Parallel (number of processors scales to handle load)
� Pipeline processors
� Dataflow
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Embedded Processor Architecture

f(); g(); h()

� Single processor

– Handles all functions

– Passes packet on
� Known as run-to-completion
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Parallel Architecture

f(); g(); h()

f(); g(); h()

f(); g(); h()

...

coordination
mechanism

� Each processor handles 1/N of total load
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Pipeline Architecture

f () g () h ()

� Each processor handles one function
� Packet moves through ‘‘pipeline’’
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Clock Rates

� Embedded processor runs at > wire speed
� Parallel processor runs at < wire speed
� Pipeline processor runs at wire speed
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Software Architecture

� Central program that invokes coprocessors like subroutines
� Central program that interacts with code on intelligent,

programmable I/O processors
� Communicating threads
� Event-driven program
� RPC-style (program partitioned among processors)
� Pipeline (even if hardware does not use pipeline)
� Combinations of the above
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Example Uses Of Programmable Processors

General purpose CPU
Highest level functionality
Administrative interface
System control
Overall management functions
Routing protocols

Embedded processor
Intermediate functionality
Higher-layer protocols
Control of I/O processors
Exception and error handling
High-level ingress (e.g., reassembly)
High-level egress (e.g., traffic shaping)

I/O processor
Basic packet processing
Classification
Forwarding
Low-level ingress operations
Low-level egress operations
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Using The Processor Hierarchy

To maximize performance, packet processing tasks should be
assigned to the lowest level processor capable of performing
the task.
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Packet Flow Through The Hierarchy

Standard CPU (external)

Embedded (RISC) Processor

I/O Processor

Lower Levels Of Processor Hierarchy

data
arrives

data
leaves

data to / from
programmable processors

small amount
of data

almost no
data
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Summary

� Network processor architectures characterized by

– Processor hierarchy

– Memory hierarchy

– Internal buses

– External interfaces

– Special-purpose functional units

– Support for concurrent or parallel execution

– Programming model

– Dispatch mechanisms
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XIV

Issues In Scaling A Network Processor
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Design Questions

� Can we make network processors

– Faster?

– Easier to use?

– More powerful?

– More general?

– Cheaper?

– All of the above?
� Scale is fundamental
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Scaling The Processor Hierarchy

� Make processors faster
� Use more concurrent threads
� Increase processor types
� Increase numbers of processors
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The Pyramid Of Processor Scale

CPU

Embedded Proc.

I / O Processors

Lower Levels Of Processor Hierarchy

� Lower levels need the most increase
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Scaling The Memory Hierarchy

� Size
� Speed
� Throughput
� Cost
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Memory Speed

� Access latency

– Raw read/write access speed

– SRAM 2 - 10 ns

– DRAM 50 - 70 ns

– External memory takes order of magnitude longer than
onboard
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Memory Speed
(continued)

� Memory cycle time

– Measure of successive read/write operations

– Important for networking because packets are large

– Read Cycle time (tRC) is time for successive fetch
operations

– Write Cycle time (tWC) is time for successive store
operations
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The Pyramid Of Memory Scale

Reg.

Onboard mem.

External SRAM

External DRAM

� Largest memory is least expensive
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Memory Bandwidth

� General measure of throughput
� More parallelism in access path yields more throughput
� Cannot scale arbitrarily

– Pinout limits

– Processor must have addresses as wide as bus
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Types Of Memory

Memory Technology Abbreviation Purpose

Synchronized DRAM SDRAM Synchronized with CPU
for lower latency

Quad Data Rate SRAM QDR-SRAM Optimized for low latency
and multiple access

Zero Bus Turnaround SRAM ZBT-SRAM Optimized for random
access

Fast Cycle RAM FCRAM Low cycle time optimized
for block transfer

Double Data Rate DRAM DDR-DRAM Optimized for low
latency

Reduced Latency DRAM RLDRAM Low cycle time and
low power requirements
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Memory Cache

� General-purpose technique
� May not work well in network systems
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Memory Cache

� General-purpose technique
� May not work well in network systems

– Low temporal locality
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Memory Cache

� General-purpose technique
� May not work well in network systems

– Low temporal locality

– Large cache size (either more entries or larger
granularity of access)
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Content Addressable Memory (CAM)

� Combination of mechanisms

– Random access storage

– Exact-match pattern search
� Rapid search enabled with parallel hardware
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Arrangement Of CAM

CAM

...

one slot

� Organized as array of slots
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Lookup In Conventional CAM

� Given

– Pattern for which to search

– Known as key
� CAM returns

– First slot that matches key, or

– All slots that match key
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Ternary CAM (T-CAM)

� Allows masking of entries
� Good for network processor
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T-CAM Lookup

� Each slot has bit mask
� Hardware uses mask to decide which bits to test
� Algorithm

for each slot do {

if ( ( key & mask ) == ( slot & mask ) ) {

declare key matches slot;

} else {

declare key does not match slot;
}

}
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Partial Matching With A T-CAM

08 00 45 06 00 50 00 02

ff ff ff ff ff ff 00 00

08 00 45 06 00 35 00 03

ff ff ff ff ff ff 00 00

08 00 45 06 00 50 00 00

slot #1

slot #2

key

mask

mask

� Key matches slot #1
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Using A T-CAM For Classification

� Extract values from fields in headers
� Form values in contiguous string
� Use a key for T-CAM lookup
� Store classification in slot
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Classification Using A T-CAM

CAM RAM

...

storage for key pointer
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Software Scalability

� Not always easy
� Many resource constraints
� Difficulty arises from

– Explicit parallelism

– Code optimized by hand

– Pipelines on heterogeneous hardware
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Summary

� Scalability key issue
� Primary subsystems affecting scale

– Processor hierarchy

– Memory hierarchy
� Many memory types available

– SRAM

– SDRAM

– CAM
� T-CAM useful for classification
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XV

Examples Of Commercial Network Processors
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Commercial Products

� Emerge in late 1990s
� Become popular in early 2000s
� Exceed thirty vendors by 2003
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Examples

� Chosen to

– Illustrate concepts

– Show broad categories

– Expose the variety
� Not necessarily ‘‘best’’
� Not meant as an endorsement of specific vendors
� Show a snapshot as of 2003
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Multi-Chip Pipeline (Agere)

� Brand name PayloadPlus
� Three individual chips

– Fast Pattern Processor (FPP) for classification

– Routing Switch Processor (RSP) for forwarding

– Agere System Interface (ASI) for traffic management
and exceptions
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Multi-Chip Pipeline (Agere)
(continued)

configuration bus

Fast
Pattern

Processor
( FPP )

Routing
Switch

Processor
( RSP )

Agere
System

Interface
( ASI )

packets
arrive

packets sent
to fabric
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Languages Used By Agere

� FPL

– Functional Programming Language

– Produces code for FPP

– Non-procedural
� ASL

– Agere Scripting Language

– Produces code for ASI

– Similar to shell scripts
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Architecture Of Agere’s FPP Chip

input
framer

output
interface

conf. bus
interface

functional bus
interface

data buffer
controller

ALU

checksum /
CRC engine

queue
engine

pattern
engine

block buffers and
context memory

program
memory

control
memory

data
buffer
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Processors On Agere’s FPP

Processor Or Unit Purpose

Pattern processing engine Perform pattern matching on each packet
Queue engine Control packet queueing
Checksum/CRC engine Compute checksum or CRC for a packet
ALU Conventional operations

Input interface and framer Divide incoming packet into 64-octet blocks
Data buffer controller Control access to external data buffer
Configuration bus interface Connect to external configuration bus
Functional bus interface Connect to external functional bus
Output interface Connect to external RSP chip

� Note: Functional bus interface implements an RPC-like
interface
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Architecture Of Agere’s RSP Chip

input
interface

output
interface

packet
assembler

stream
editor

Transmit Queue Logic

queue
manager

logic

traffic
manager
engine

traffic
shaper
engine

ext. sched.
SSRAM

ext. sched.
interface

ext. queue
entry SSRAM

ext. linked
list SSRAM

config.
inter-
face

packets in SDRAM SSRAM

input output
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Processors On Agere’s RSP

Processor Or Unit Purpose

Stream editor engine Perform modifications on packet
Traffic manager engine Police traffic and keep statistics
Traffic shaper engine Ensure QoS parameters

Input interface Accept packet from FPP
Packet assembler Store incoming packet in memory
Queue manager logic Interface to external traffic scheduler
Configuration bus interface Connect to external configuration bus
Output interface External connection for outgoing packets
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Augmented RISC (Alchemy)

� Based on MIPS-32 CPU

– Five-stage pipeline
� Augmented for packet processing

– Instructions (e.g. multiply-and-accumulate)

– Memory cache

– I/O interfaces
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Alchemy Architecture

fast IrDA

EJTAG

DMA controller

Ethernet MAC

LCD controller

USB-Host contr.

USB-Device contr.

interrupt controller

GPIO

I2S

Serial line UART (2)

SDRAM controller

MAC

MIPS-32
embed.
proc.

instruct.
cache

bus unit

data
cache

SRAM controller

AC ’97 controller

SSI (2)

power management

RTC (2)

SRAM
bus

to
SDRAM
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Parallel Embedded Processors
Plus Coprocessors (AMCC)

� One to six nP core processors
� Various engines

– Packet metering

– Packet transform

– Packet policy
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AMCC Architecture

control iface debug port inter mod. test iface

input outputpacket transform engine

external search
interface

external memory
interface

host
interface

memory access unit

onboard
memory

six
nP cores

policy
engine

metering
engine
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Pipeline Of Homogeneous
Processors (Cisco)

� Parallel eXpress Forwarding (PXF)
� Arranged in parallel pipelines
� Packet flows through one pipeline
� Each processor in pipeline dedicated to one task
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Cisco Architecture

input

output

MAC classify

Accounting & ICMP

FIB & Netflow

MPLS classify

Access Control

CAR

MLPPP

WRED
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Configurable Instruction Set
Processors (Cognigine)

� Up to sixteen parallel processors
� Connected in a pipeline
� Processor called Reconfigurable Communication Unit

(RCU)
� Interconnected by Routing Switch Fabric (RSF)
� Instruction set determined by loadable dictionary
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Cognigine Architecture

routing switch fabric connector

pointer
file

diction-
ary

instr.
cache

data
memory

addr.
calc.

dict.
de-

code

pipe-
line
ctl.

packet buffers

registers & scratch memory

execut.
unit

execut.
unit

execut.
unit

execut.
unit

source
route

source
route

source
route

source
route
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Pipeline Of Parallel
Heterogeneous Processors

(EZchip)
� Four processor types
� Each type optimized for specific task
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EZchip Architecture

TOPparse TOPsearch TOPresolve TOPmodify

memory memory memory memory

...........

...........

...........

...........
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EZchip Processor Types

Processor Type Optimized For

TOPparse Header field extraction and classification
TOPsearch Table lookup
TOPresolve Queue management and forwarding
TOPmodify Packet header and content modification
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Extensive And Diverse Processors
(IBM)

� Multiple processor types
� Extensive use of parallelism
� Separate ingress and egress processing paths
� Multiple onboard data stores
� Model is NP4GS3
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IBM NP4GS3 Architecture

ingress
data
store

SRAM
for

ingress
data

egress
data
store

traffic
manag.

and
sched.

ingress
switch

interface

egress
switch

interface
internal
SRAM

Embedded Processor Complex
(EPC)

ingress
physical

MAC
multiplexor

egress
physical

MAC
multiplexor

to switching
fabric

PCI
bus

external DRAM
and SRAM

from switching
fabric

egress
data store

packets from
physical devices

packets to
physical devices
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IBM’s Embedded Processor Complex

control memory arbiter

H0 H1 H2 H3 H4 S D0 D1 D2 D3 D4 D5 D6

frame dispatch

instr. memory classifier assist bus arbiter

ingress
data
iface egress

data
iface

embed.
PowerPC

inter. bus controlhardware regs.

completion unit

debug & inter.

programmable
protocol processors

(16 picoengines)

.....................................................

ingress
data
store

egress
data
store

to onboard memory to external memory

internal
bus

PCI
bus

egress
queue

ingress
data
store egress

data
store

ingress
queue

interrupts

exceptions
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Packet Engines

� Found in Embedded Processor Complex
� Programmable
� Handle many packet processing tasks
� Operate in parallel (sixteen)
� Known as picoengines
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Other Processors On The IBM Chip

Coprocessor Purpose

Data Store Provides frame buffer DMA
Checksum Calculates or verifies header checksums
Enqueue Passes outgoing frames to switch or target queues
Interface Provides access to internal registers and memory
String Copy Transfers internal bulk data at high speed
Counter Updates counters used in protocol processing
Policy Manages traffic
Semaphore Coordinates and synchronizes threads
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Flexible RISC Plus Coprocessors
(Motorola C-PORT)

� Onboard processors can be

– Dedicated

– Parallel clusters

– Pipeline
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C-Port Architecture

switching fabric

network
processor

1

network
processor

2

network
processor

N
. . .

physical
interface 1

physical
interface 2

physical
interface N
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C-Port Configured As
Parallel Clusters

multiple onboard buses

queue
mgmt.

unit
fabric
proc.

table
lookup

unit

buffer
mgmt.

unit
Exec. Processor

pci ser. prom

. . .CP-0 CP-1 CP-2 CP-3 CP-12 CP-13 CP-14 CP-15

clusters

SRAM fabric
switching

SRAM PCI bus serial PROM DRAM

connections to
physical interfaces
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Internal Structure Of A
C-Port Channel Processor

memory bus

RISC Processor

extract
space

merge
space

Serial Data
Processor

(in)

Serial Data
Processor

(out)

To external DRAM

packets arrive packets leave

� Actually a processor complex
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Summary

� Many network processor architecture variations
� Examples include

– Multi-chip and single-chip products

– Augmented RISC processor

– Embedded parallel processors plus coprocessors

– Pipeline of homogeneous processors

– Configurable instruction set

– Pipeline of parallel heterogeneous processors

– Extensive and diverse processors

– Flexible RISC plus coprocessors
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XXVII

Intel’s Second Generation Processors
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Terminology

In the network processor industry, one has to be careful when
describing successive versions of network processors because
the delay between the announcement of a new product and the
actual date at which customers can obtain the product gives a
second meaning to the phrase ‘‘later versions of a network
processor’’.
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General Characteristics

� Same basic architecture

– Embedded processor

– Parallel microengines
� Enhancements

– Speed

– Amount of parallelism

– Functionality
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Models Of Next Generation Chips

� Two primary models

– IXP2400 (2.4 Gbps)

– IXP2800 (10 Gbps)
� Version of 2800 with onboard encryption processor

– IXP2850
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Use Of Two Chips For Higher Throughput

� Problem

– One chip insufficient for full duplex
� Solution

– Increase parallelism

– Use separate chips for ingress and egress processing
� Need communication path between them
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Conceptual Data Flow Through Two Chips

F

A

B

R

I

C

fabric
gasket

IXP2400
(ingress)

IXP2400
(egress)

input
demux

network
interface

� Many details not shown

– Inter-chip communication mechanism

– Memory interfaces
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IXP2400 Features

� XScale embedded processor (ARM compliant) with caches
� Eight microengines (400 or 600 MHz)
� Eight hardware threads per microengine
� Multiple microengine instruction stores of one thousand

instructions each
� Two hundred fifty-six general-purpose registers
� Five hundred twelve transfer registers
� Addressing for two gigabyte DDR-DRAM
� Addressing for thirty-two megabyte QDR-SRAM
� Sixteen words of Next Neighbor Registers
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Memory Hierarchy

� External DDR-DRAM
� External QDR-SRAM

– Q-array hardware in controller
� Onboard Scratchpad memory
� Onboard local memory
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External Connections And Buses

� No IX bus
� High-speed interfaces attach to Media or Switch Fabric

(MSF) interface
� MSF configurable to

– Utopia 1, 2, or 3 interface

– CSIX-L1 fabric interface

– SPI-3 (POS-PHY 2/3) interface
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Illustration Of External Connections

IXP2400
chip

PCI bus

coprocessor
bus

classif.
acceler.

ASIC

...

Flash
Mem.

QDR
SRAM

DDR
DRAM

flow
control

bus

input and output demux

Slow Port
interface

optional host connection

Media or
Switch Fabric
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Internal Architecture

IXP2400 chip

PCI bus

PCI
iface.

coprocessor
bus

coproc.
iface.

classif.
acceler.

ASIC

...

Flash
Mem.

slow
port

QDR
SRAM

SRAM
iface.

DDR
DRAM

DRAM
iface.

flow
control

bus

FC bus
iface.

input and output demux

receive transmit

XScale
RISC

processor

MEs 1 - 4

MEs 5 - 8

hash
unit

scratch
memory

multiple,
independent

internal
buses

Media or
Switch Fabric

interface

optional host connection

Media or
Switch Fabric
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Microengine Enhancements

� Multiplier unit
� Pseudo-random number generator
� CRC calculator
� Four thirty-two bit timers and timer signaling
� Sixteen entry CAM
� Timestamping unit
� Support for generalized thread signaling
� Six hundred forty words of local memory
� Queue manipulation mechanism that eliminates the need for

mutual exclusion
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Microengine Enhancements
(continued)

� ATM segmentation and reassembly hardware
� Byte alignment facilities
� Two ME clusters with independent buses
� Called Microengine Version 2
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Other Facilities

� Reflector mode pathways

– Internal, unidirectional buses

– Allow microengines to communicate
� Next Neighbor Registers

– Pass data from one ME to another

– Intended for software pipeline
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IXP2800 Features

� Same general architecture as 2400
� Sixteen microengines (1.4 GHz)
� Two unidirectional sixteen-bit Low Voltage Differential

Signaling data interfaces that can be configured as

– SPI-4 Phase 2

– CSIX switching fabric interface
� Four QDR-SRAM interfaces (1.6 gigabytes per second

each)
� Three RDRAM interfaces (1.6 gigabytes per second each)
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Summary

� Intel is moving to second generation of network processors
� Three models announced

– IXP2400

– IXP2800

– IXP2850
� Same general architecture, except

– Faster processors

– More parallelism

– More hardware facilities

– Newer, faster external connections
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